The Third People's Hospital of Shenzhen, Shenzhen, 518112, China.
National Clinical Research Center for Infectious Diseases, Shenzhen, 518112, China.
Sci Rep. 2024 Oct 21;14(1):24685. doi: 10.1038/s41598-024-74942-z.
Loss to follow-up (LTFU) in tuberculosis (TB) management increases morbidity and mortality, challenging effective control strategies. This study aims to develop and evaluate machine learning models to predict loss to follow-up in TB patients, improving treatment adherence and outcomes. Retrospective data encompassing tuberculosis patients who underwent treatment or registration at the National Center for Clinical Medical Research on Infectious Diseases from January 2017 to December 2021 were compiled. Employing machine learning techniques, namely SVM, RF, XGBoost, and logistic regression, the study aimed to prognosticate LTFU. A comprehensive cohort of 24,265 tuberculosis patients underwent scrutiny, revealing a LTFU prevalence of 12.51% (n = 3036). Education level, history of hospitalization, alcohol consumption, outpatient admission, and prior tuberculosis history emerged as precursors for pre-treatment LTFU. Employment status, outpatient admission, presence of chronic hepatitis/cirrhosis, drug adverse reactions, alternative contact availability, and health insurance coverage exerted substantial influence on treatment-phase LTFU. XGBoost consistently surpassed alternative models, boasting superior discriminative ability with an average AUC of 0.921 for pre-treatment LTFU and 0.825 for in-treatment LTFU. Our study demonstrates that the XGBoost model provides superior predictive performance in identifying LTFU risk among tuberculosis patients. The identification of key risk factors highlights the importance of targeted interventions, which could lead to significant improvements in treatment adherence and patient outcomes.
失访(LTFU)在结核病(TB)管理中增加了发病率和死亡率,挑战了有效的控制策略。本研究旨在开发和评估机器学习模型,以预测结核病患者的失访情况,从而提高治疗依从性和治疗效果。
本研究回顾性地分析了 2017 年 1 月至 2021 年 12 月在国家临床传染病医学研究中心接受治疗或登记的结核病患者的数据。使用机器学习技术,包括 SVM、RF、XGBoost 和逻辑回归,研究旨在预测 LTFU。共纳入了 24265 例结核病患者,其中 LTFU 的患病率为 12.51%(n=3036)。
教育水平、住院史、饮酒、门诊入院和既往结核病史是治疗前 LTFU 的预测因素。就业状况、门诊入院、慢性肝炎/肝硬化、药物不良反应、替代联系人的可用性和医疗保险覆盖范围对治疗期 LTFU 有显著影响。XGBoost 始终优于其他模型,具有较高的判别能力,治疗前 LTFU 的平均 AUC 为 0.921,治疗中 LTFU 的平均 AUC 为 0.825。
我们的研究表明,XGBoost 模型在识别结核病患者的 LTFU 风险方面具有较好的预测性能。识别关键风险因素突出了针对性干预的重要性,这可能会显著提高治疗依从性和患者结局。