Suppr超能文献

运用机器学习预测24小时眼压峰值及平均值。

Predicting 24-hour intraocular pressure peaks and averages with machine learning.

作者信息

Chen Ranran, Lei Jinming, Liao Yujie, Jin Yiping, Wang Xue, Li Xiaomei, Wu Danping, Li Hong, Bi Yanlong, Zhu Haohao

机构信息

Department of Ophthalmology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.

Software Engineering, Shenzhen Yishi Huolala Technology Company Limited, Shenzhen, China.

出版信息

Front Med (Lausanne). 2024 Oct 7;11:1459629. doi: 10.3389/fmed.2024.1459629. eCollection 2024.

Abstract

PURPOSE

Predicting 24-hour peak and average intraocular pressure (IOP) is essential for the diagnosis and management of glaucoma. This study aimed to develop and assess a machine learning model for predicting 24-hour peak and average IOP, leveraging advanced techniques to enhance prediction accuracy. We also aimed to identify relevant features and provide insights into the prediction results to better inform clinical practice.

METHODS

In this retrospective study, electronic medical records from January 2014 to May 2024 were analyzed, incorporating 24-hour IOP monitoring data and patient characteristics. Predictive models based on five machine learning algorithms were trained and evaluated. Five time points (10:00 AM, 12:00 PM, 2:00 PM, 4:00 PM, and 6:00 PM) were tested to optimize prediction accuracy using their combinations. The model with the highest performance was selected, and feature importance was assessed using Shapley Additive Explanations.

RESULTS

This study included data from 517 patients (1,034 eyes). For predicting 24-hour peak IOP, the Random Forest Regression (RFR) model utilizing IOP values at 10:00 AM, 12:00 PM, 2:00 PM, and 4:00 PM achieved optimal performance: MSE 5.248, RMSE 2.291, MAE 1.694, and R 0.823. For predicting 24-hour average IOP, the RFR model using IOP values at 10:00 AM, 12:00 PM, 4:00 PM, and 6:00 PM performed best: MSE 1.374, RMSE 1.172, MAE 0.869, and R 0.918.

CONCLUSION

The study developed machine learning models that predict 24-hour peak and average IOP. Specific time point combinations and the RFR algorithm were identified, which improved the accuracy of predicting 24-hour peak and average intraocular pressure. These findings provide the potential for more effective management and treatment strategies for glaucoma patients.

摘要

目的

预测24小时眼压峰值和平均眼压对于青光眼的诊断和治疗至关重要。本研究旨在开发并评估一种用于预测24小时眼压峰值和平均眼压的机器学习模型,利用先进技术提高预测准确性。我们还旨在识别相关特征并深入了解预测结果,以便更好地为临床实践提供参考。

方法

在这项回顾性研究中,分析了2014年1月至2024年5月的电子病历,纳入了24小时眼压监测数据和患者特征。基于五种机器学习算法训练并评估了预测模型。测试了五个时间点(上午10:00、中午12:00、下午2:00、下午4:00和下午6:00),通过组合这些时间点来优化预测准确性。选择了性能最佳的模型,并使用Shapley加性解释评估特征重要性。

结果

本研究纳入了517例患者(1034只眼)的数据。对于预测24小时眼压峰值,利用上午10:00、中午12:00、下午2:00和下午4:00眼压值的随机森林回归(RFR)模型表现最佳:均方误差(MSE)为5.248,均方根误差(RMSE)为2.291,平均绝对误差(MAE)为1.694,决定系数(R)为0.823。对于预测24小时平均眼压,使用上午10:00、中午12:00、下午4:00和下午6:00眼压值的RFR模型表现最优:MSE为1.374,RMSE为1.172,MAE为0.869,R为0.918。

结论

该研究开发了可预测24小时眼压峰值和平均眼压的机器学习模型。确定了特定的时间点组合和RFR算法,提高了预测24小时眼压峰值和平均眼压的准确性。这些发现为青光眼患者制定更有效的管理和治疗策略提供了可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5247/11493148/6435a57aee81/fmed-11-1459629-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验