Suppr超能文献

利用人工智能在精准医学中的力量:基于二代测序的结直肠癌队列治疗见解

Harnessing the power of AI in precision medicine: NGS-based therapeutic insights for colorectal cancer cohort.

作者信息

Murcia Pienkowski Victor, Skoczylas Piotr, Zaremba Agata, Kłęk Stanisław, Balawejder Martyna, Biernat Paweł, Czarnocka Weronika, Gniewek Oskar, Grochowalski Łukasz, Kamuda Małgorzata, Król-Józaga Bartłomiej, Marczyńska-Grzelak Joanna, Mazzocco Giovanni, Szatanek Rafał, Widawski Jakub, Welanyk Joanna, Orzeszko Zofia, Szura Mirosław, Torbicz Grzegorz, Borys Maciej, Wohadlo Łukasz, Wysocki Michał, Karczewski Marek, Markowska Beata, Kucharczyk Tomasz, Piatek Marek J, Jasiński Maciej, Warchoł Michał, Kaczmarczyk Jan, Blum Agnieszka, Sanecka-Duin Anna

机构信息

AI Lab, Ardigen SA, Cracow, Poland.

Surgical Oncology Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow, Poland.

出版信息

Front Oncol. 2024 Oct 7;14:1407465. doi: 10.3389/fonc.2024.1407465. eCollection 2024.

Abstract

PURPOSE

Developing innovative precision and personalized cancer therapeutics is essential to enhance cancer survivability, particularly for prevalent cancer types such as colorectal cancer. This study aims to demonstrate various approaches for discovering new targets for precision therapies using artificial intelligence (AI) on a Polish cohort of colorectal cancer patients.

METHODS

We analyzed 71 patients with histopathologically confirmed advanced resectional colorectal adenocarcinoma. Whole exome sequencing was performed on tumor and peripheral blood samples, while RNA sequencing (RNAseq) was conducted on tumor samples. We employed three approaches to identify potential targets for personalized and precision therapies. First, using our in-house neoantigen calling pipeline, ARDentify, combined with an AI-based model trained on immunopeptidomics mass spectrometry data (ARDisplay), we identified neoepitopes in the cohort. Second, based on recurrent mutations found in our patient cohort, we selected corresponding cancer cell lines and utilized knock-out gene dependency scores to identify synthetic lethality genes. Third, an AI-based model trained on cancer cell line data was employed to identify cell lines with genomic profiles similar to selected patients. Copy number variants and recurrent single nucleotide variants in these cell lines, along with gene dependency data, were used to find personalized synthetic lethality pairs.

RESULTS

We identified approximately 8,700 unique neoepitopes, but none were shared by more than two patients, indicating limited potential for shared neoantigenic targets across our cohort. Additionally, we identified three synthetic lethality pairs: the well-known APC-CTNNB1 and BRAF-DUSP4 pairs, along with the recently described APC-TCF7L2 pair, which could be significant for patients with APC and BRAF variants. Furthermore, by leveraging the identification of similar cancer cell lines, we uncovered a potential gene pair, VPS4A and VPS4B, with therapeutic implications.

CONCLUSION

Our study highlights three distinct approaches for identifying potential therapeutic targets in cancer patients. Each approach yielded valuable insights into our cohort, underscoring the relevance and utility of these methodologies in the development of precision and personalized cancer therapies. Importantly, we developed a novel AI model that aligns tumors with representative cell lines using RNAseq and methylation data. This model enables us to identify cell lines closely resembling patient tumors, facilitating accurate selection of models needed for in vitro validation.

摘要

目的

开发创新的精准和个性化癌症治疗方法对于提高癌症生存率至关重要,尤其是对于结直肠癌等常见癌症类型。本研究旨在展示在波兰结直肠癌患者队列中使用人工智能(AI)发现精准治疗新靶点的各种方法。

方法

我们分析了71例经组织病理学确诊的晚期切除性结直肠腺癌患者。对肿瘤和外周血样本进行全外显子测序,对肿瘤样本进行RNA测序(RNAseq)。我们采用了三种方法来确定个性化和精准治疗的潜在靶点。首先,使用我们内部的新抗原识别流程ARDentify,并结合基于免疫肽组学质谱数据训练的人工智能模型(ARDisplay),我们在队列中识别出新表位。其次,基于在我们的患者队列中发现的复发性突变,我们选择了相应的癌细胞系,并利用基因敲除依赖性评分来识别合成致死基因。第三,使用基于癌细胞系数据训练的人工智能模型来识别基因组图谱与选定患者相似的细胞系。这些细胞系中的拷贝数变异和复发性单核苷酸变异,以及基因依赖性数据,被用于寻找个性化的合成致死配对。

结果

我们识别出约8700个独特的新表位,但没有两个以上患者共享的新表位,这表明我们队列中共享新抗原靶点的潜力有限。此外,我们识别出三对合成致死配对:著名的APC-CTNNB1和BRAF-DUSP4配对,以及最近描述的APC-TCF7L2配对,这对携带APC和BRAF变异的患者可能具有重要意义。此外,通过利用相似癌细胞系的识别,我们发现了一对具有治疗意义的潜在基因对VPS4A和VPS4B。

结论

我们的研究突出了三种在癌症患者中识别潜在治疗靶点的不同方法。每种方法都为我们的队列提供了有价值的见解,强调了这些方法在精准和个性化癌症治疗开发中的相关性和实用性。重要的是,我们开发了一种新型人工智能模型,该模型使用RNAseq和甲基化数据将肿瘤与代表性细胞系进行比对。该模型使我们能够识别与患者肿瘤非常相似的细胞系,便于准确选择体外验证所需的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6d7/11491396/ac6309a18897/fonc-14-1407465-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验