Suppr超能文献

下一代癌症表型组学:揭示肺癌复杂性和推进精准医学的变革性方法。

Next-Generation Cancer Phenomics: A Transformative Approach to Unraveling Lung Cancer Complexity and Advancing Precision Medicine.

作者信息

Dasgupta Sanjukta

机构信息

Department of Biotechnology, Center for Multidisciplinary Research and Innovations, Brainware University, Barasat, India.

出版信息

OMICS. 2024 Dec;28(12):585-595. doi: 10.1089/omi.2024.0175. Epub 2024 Oct 22.

Abstract

Lung cancer remains one of the leading causes of cancer-related deaths globally, with its complexity driven by intricate and intertwined genetic, epigenetic, and environmental factors. Despite advances in genomics, transcriptomics, and proteomics, understanding the phenotypic diversity of lung cancer has lagged behind. Next-generation phenomics, which integrates high-throughput phenotypic data with multiomics approaches and digital technologies such as artificial intelligence (AI), offers a transformative strategy for unraveling the complexity of lung cancer. This approach leverages advanced imaging, single-cell technologies, and AI to capture dynamic phenotypic variations at cellular, tissue, and whole organism levels and in ways resolved in temporal and spatial contexts. By mapping the high-throughput and spatially and temporally resolved phenotypic profiles onto molecular alterations, next-generation phenomics provides deeper insights into the tumor microenvironment, cancer heterogeneity, and drug efficacy, safety, and resistance mechanisms. Furthermore, integrating phenotypic data with genomic and proteomic networks allows for the identification of novel biomarkers and therapeutic targets in ways informed by biological structure and function, fostering precision medicine in lung cancer treatment. This expert review examines and places into context the current advances in next-generation phenomics and its potential to redefine lung cancer diagnosis, prognosis, and therapy. It highlights the emerging role of AI and machine learning in analyzing complex phenotypic datasets, enabling personalized therapeutic interventions. Ultimately, next-generation phenomics holds the promise of bridging the gap between molecular alterations and clinical and population health outcomes, providing a holistic understanding of lung cancer biology that could revolutionize its management and improve patient survival rates.

摘要

肺癌仍然是全球癌症相关死亡的主要原因之一,其复杂性由错综复杂的遗传、表观遗传和环境因素驱动。尽管基因组学、转录组学和蛋白质组学取得了进展,但对肺癌表型多样性的理解仍滞后。新一代表型组学将高通量表型数据与多组学方法以及人工智能(AI)等数字技术相结合,为揭示肺癌的复杂性提供了一种变革性策略。这种方法利用先进的成像、单细胞技术和人工智能,在细胞、组织和整个生物体水平上捕捉动态表型变化,并在时间和空间背景下解析。通过将高通量以及时空分辨的表型图谱映射到分子改变上,新一代表型组学能够更深入地了解肿瘤微环境、癌症异质性以及药物疗效、安全性和耐药机制。此外,将表型数据与基因组和蛋白质组网络相结合,能够以生物结构和功能为依据识别新的生物标志物和治疗靶点,推动肺癌治疗的精准医学发展。本专家综述审视并阐述了新一代表型组学的当前进展及其重新定义肺癌诊断、预后和治疗的潜力。它强调了人工智能和机器学习在分析复杂表型数据集方面的新兴作用,从而实现个性化治疗干预。最终,新一代表型组学有望弥合分子改变与临床及人群健康结果之间的差距,全面理解肺癌生物学,这可能会彻底改变肺癌的管理方式并提高患者生存率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验