Plet Guillaume, Raviol Jolan, Langlois Jean-Baptiste, Si-Mohamed Salim, Magoariec Hélène, Pailler-Mattei Cyril
Laboratoire de Tribologie et Dynamique des Systèmes, UMR CNRS 5513, École Centrale de Lyon, 69130, Ecully, France.
CERMEP, Imagerie du Vivant, 69500, Bron, France.
Ann Biomed Eng. 2025 Feb;53(2):406-419. doi: 10.1007/s10439-024-03633-7. Epub 2024 Oct 22.
This study addresses the critical issue of evaluating the risk of rupture of unruptured intracranial aneurysms (UIAs) through the assessment of the mechanical properties of the aneurysm wall. To achieve this, an original approach based on the development of an in vivo deformation device prototype (DDP) of the vascular wall is proposed. The DDP operates by pulsing a physiological fluid onto the vascular wall and measuring the resulting deformation using spectral photon counting computed tomography (SPCCT) imaging.
In this preliminary study conducted on a rabbit animal model, an aneurysm was induced on the carotid artery, followed by deformation of the aneurysm sac wall using the DDP. The change in luminal volume of the aneurysm sac induced by the deformation of the vascular wall was then quantified.
The initial experimental results demonstrated an increase in the luminal volume of the aneurysm sac in relation to the increased flow rate of the fluid pulsed by the DDP onto the arterial wall. Measurement of the pressure generated by the DDP in relation to the different flow rate values imposed by the pulsation system revealed experimental values of the same order of magnitude as dynamic blood pressure. Furthermore, theoretical pressure values on the deformed area, calculated using Euler's theorem, appeared to be correlated with experimental pressure measurements.
This equivalence between theory and experiment is a key element in the use of the DDP for estimating the mechanical properties of the vascular wall, particularly for the use of finite element models to characterise the stress state of the deformed vascular wall. This preliminary work thus presents a novel, innovative, and promising approach for the evaluation and management of the risk of rupture of unruptured intracranial aneurysms.
本研究旨在通过评估动脉瘤壁的力学性能来解决评估未破裂颅内动脉瘤(UIAs)破裂风险这一关键问题。为此,提出了一种基于开发血管壁体内变形装置原型(DDP)的原始方法。DDP通过向血管壁脉冲注入生理流体并使用光谱光子计数计算机断层扫描(SPCCT)成像测量由此产生的变形来运行。
在对兔动物模型进行的这项初步研究中,在颈动脉上诱发动脉瘤,然后使用DDP使动脉瘤囊壁变形。接着对由血管壁变形引起的动脉瘤囊腔体积变化进行量化。
初步实验结果表明,随着DDP向动脉壁脉冲注入的流体流速增加,动脉瘤囊腔体积增大。测量DDP产生的压力与脉动系统施加的不同流速值的关系,发现实验值与动态血压处于同一数量级。此外,使用欧拉定理计算的变形区域上的理论压力值似乎与实验压力测量值相关。
理论与实验之间的这种等效性是使用DDP估计血管壁力学性能的关键因素,特别是在使用有限元模型来表征变形血管壁的应力状态方面。因此,这项初步工作为评估和管理未破裂颅内动脉瘤的破裂风险提供了一种新颖、创新且有前景的方法。