Suppr超能文献

膝关节骨关节炎SCAENet:使用具有基于注意力的集成网络和混合优化策略的空间可分离卷积进行自适应膝关节骨关节炎严重程度评估

Knee Osteoarthritis SCAENet: Adaptive Knee Osteoarthritis Severity Assessment Using Spatial Separable Convolution with Attention-Based Ensemble Networks with Hybrid Optimization Strategy.

作者信息

Devarapaga Sriramulu, Thumma Rajesh

机构信息

Department of Electronics and Communication Engineering, Anurag University, Hyderabad, Telangana, 500088, India.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1563-1580. doi: 10.1007/s10278-024-01306-4. Epub 2024 Oct 22.

Abstract

Osteoarthritis (OA) of the knee is a chronic state that significantly lowers the quality of life for its patients. Early detection and lifetime monitoring of the progression of OA are necessary for preventive therapy. In the course of therapy, the Kellgren and Lawrence (KL) assessment model categorizes the rigidity of OA. Deep techniques have recently been used to increase the precision and effectiveness of OA severity assessments. The training process is compromised by low-confidence samples, which are less accurate than normal ones. In this work, a deep learning-based knee osteoarthritis severity assessment model is recommended to accurately identify the condition in patients. The phases of the designed model are data collection, feature extraction, and prediction. At first, the images are generally gathered from online resources. The gathered images are given into the feature extraction phase. A new model is implemented to predict knee osteoarthritis named Spatial Separable Convolution with Attention-based Ensemble Networks (SCAENet), which includes feature extraction, stacked target-based feature pool generation, and knee osteoarthritis prediction. The feature extraction is done using ResNet, Visual Geometry Group (VGG16), and DenseNet. The stacked target-based feature pool is obtained from the SCAENet. Hence, the stacked target-based feature pool is obtained by the Hybridization of Equilibrium Slime Mould with Bald Eagle Search Optimization (HESM-BESO). Here, the knee osteoarthritis's severity prediction is performed using the dimensional convolutional neural network (1DCNN) technique. The designed SCAENet model is validated with other conventional methods to show high performance.

摘要

膝关节骨关节炎(OA)是一种慢性疾病,会显著降低患者的生活质量。对OA的早期检测和疾病进展的终生监测对于预防性治疗至关重要。在治疗过程中,凯尔格伦和劳伦斯(KL)评估模型对OA的严重程度进行分类。近年来,深度学习技术已被用于提高OA严重程度评估的准确性和有效性。训练过程受到低置信度样本的影响,这些样本的准确性低于正常样本。在这项工作中,推荐一种基于深度学习的膝关节骨关节炎严重程度评估模型,以准确识别患者的病情。所设计模型的阶段包括数据收集、特征提取和预测。首先,图像通常从在线资源收集。收集到的图像进入特征提取阶段。实现了一种名为基于注意力的集成网络的空间可分离卷积(SCAENet)的新模型来预测膝关节骨关节炎,该模型包括特征提取、基于堆叠目标的特征池生成和膝关节骨关节炎预测。特征提取使用残差网络(ResNet)、视觉几何组(VGG16)和密集连接网络(DenseNet)完成。基于堆叠目标的特征池是从SCAENet获得的。因此,基于堆叠目标的特征池是通过平衡粘液霉菌与白头鹰搜索优化(HESM-BESO)的混合算法得到的。在这里,使用一维卷积神经网络(1DCNN)技术进行膝关节骨关节炎的严重程度预测。所设计的SCAENet模型与其他传统方法进行了验证,以显示其高性能。

相似文献

本文引用的文献

4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验