Suppr超能文献

基于 ResNet 的深度特征和随机森林分类器在糖尿病视网膜病变检测中的应用。

ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy Detection.

机构信息

School of Systems and Technology, University of Management and Technology, UMT Road, C-II Johar Town, Lahore 54782, Pakistan.

Center of Excellence in Intelligent Engineering Systems, Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Sensors (Basel). 2021 Jun 4;21(11):3883. doi: 10.3390/s21113883.

Abstract

Diabetic retinopathy, an eye disease commonly afflicting diabetic patients, can result in loss of vision if prompt detection and treatment are not done in the early stages. Once the symptoms are identified, the severity level of the disease needs to be classified for prescribing the right medicine. This study proposes a deep learning-based approach, for the classification and grading of diabetic retinopathy images. The proposed approach uses the feature map of ResNet-50 and passes it to Random Forest for classification. The proposed approach is compared with five state-of-the-art approaches using two category Messidor-2 and five category EyePACS datasets. These two categories on the Messidor-2 dataset include 'No Referable Diabetic Macular Edema Grade (DME)' and 'Referable DME' while five categories consist of 'Proliferative diabetic retinopathy', 'Severe', 'Moderate', 'Mild', and 'No diabetic retinopathy'. The results show that the proposed approach outperforms compared approaches and achieves an accuracy of 96% and 75.09% for these datasets, respectively. The proposed approach outperforms six existing state-of-the-art architectures, namely ResNet-50, VGG-19, Inception-v3, MobileNet, Xception, and VGG16.

摘要

糖尿病性视网膜病变是一种常见的糖尿病眼病,如果在早期阶段没有及时发现和治疗,可能会导致视力丧失。一旦出现症状,就需要对疾病的严重程度进行分类,以便开出正确的药物。本研究提出了一种基于深度学习的方法,用于对糖尿病性视网膜病变图像进行分类和分级。该方法使用 ResNet-50 的特征图,并将其传递给随机森林进行分类。该方法与五种最先进的方法在 Messidor-2 和 EyePACS 两个数据集上进行了比较。Messidor-2 数据集的这两个类别包括“无参考性糖尿病性黄斑水肿等级(DME)”和“有参考性 DME”,而五个类别包括“增殖性糖尿病性视网膜病变”、“严重”、“中度”、“轻度”和“无糖尿病性视网膜病变”。结果表明,与现有的六种最先进的架构相比,该方法的表现优于其他方法,在这两个数据集上的准确率分别达到了 96%和 75.09%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4c2/8200077/c6d0b3e51ba0/sensors-21-03883-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验