Suppr超能文献

HTRecNet:用于高效准确诊断肝细胞癌和胆管癌的深度学习研究

HTRecNet: a deep learning study for efficient and accurate diagnosis of hepatocellular carcinoma and cholangiocarcinoma.

作者信息

Li Jingze, Niu Yupeng, Du Junwu, Wu Jiani, Guo Weichen, Wang Yujie, Wang Jian, Mu Jiong

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya' an, China.

Artificial Intelligence Laboratory, Sichuan Agricultural University, Ya' an, China.

出版信息

Front Cell Dev Biol. 2025 Mar 24;13:1549811. doi: 10.3389/fcell.2025.1549811. eCollection 2025.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the primary liver cancer types. Traditional diagnostic techniques, reliant on radiologist interpretation, are both time-intensive and often inadequate for detecting the less prevalent CCA. There is an emergent need to explore automated diagnostic methods using deep learning to address these challenges.

METHODS

This study introduces HTRecNet, a novel deep learning framework for enhanced diagnostic precision and efficiency. The model incorporates sophisticated data augmentation strategies to optimize feature extraction, ensuring robust performance even with constrained sample sizes. A comprehensive dataset of 5,432 histopathological images was divided into 5,096 for training and validation, and 336 for external testing. Evaluation was conducted using five-fold cross-validation and external validation, applying metrics such as accuracy, area under the receiver operating characteristic curve (AUC), and Matthews correlation coefficient (MCC) against established clinical benchmarks.

RESULTS

The training and validation cohorts comprised 1,536 images of normal liver tissue, 3,380 of HCC, and 180 of CCA. HTRecNet showed exceptional efficacy, consistently achieving AUC values over 0.99 across all categories. In external testing, the model reached an accuracy of 0.97 and an MCC of 0.95, affirming its reliability in distinguishing between normal, HCC, and CCA tissues.

CONCLUSION

HTRecNet markedly enhances the capability for early and accurate differentiation of HCC and CCA from normal liver tissues. Its high diagnostic accuracy and efficiency position it as an invaluable tool in clinical settings, potentially transforming liver cancer diagnostic protocols. This system offers substantial support for refining diagnostic workflows in healthcare environments focused on liver malignancies.

摘要

背景

肝细胞癌(HCC)和胆管癌(CCA)是主要的肝癌类型。传统的诊断技术依赖放射科医生的解读,既耗时又常常不足以检测出不太常见的CCA。迫切需要探索使用深度学习的自动化诊断方法来应对这些挑战。

方法

本研究引入了HTRecNet,这是一种用于提高诊断精度和效率的新型深度学习框架。该模型采用了复杂的数据增强策略来优化特征提取,即使在样本量有限的情况下也能确保强大的性能。一个包含5432张组织病理学图像的综合数据集被分为5096张用于训练和验证,336张用于外部测试。使用五折交叉验证和外部验证进行评估,针对既定的临床基准应用准确率、受试者操作特征曲线下面积(AUC)和马修斯相关系数(MCC)等指标。

结果

训练和验证队列包括1536张正常肝组织图像、3380张HCC图像和180张CCA图像。HTRecNet显示出卓越的疗效,在所有类别中始终实现AUC值超过0.99。在外部测试中,该模型的准确率达到0.97,MCC为0.95,证实了其在区分正常、HCC和CCA组织方面的可靠性。

结论

HTRecNet显著增强了从正常肝组织中早期准确区分HCC和CCA的能力。其高诊断准确性和效率使其成为临床环境中不可或缺的工具,有可能改变肝癌诊断方案。该系统为优化专注于肝脏恶性肿瘤的医疗环境中的诊断工作流程提供了有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69df/11973358/a0fb2aeb883d/fcell-13-1549811-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验