Suppr超能文献

第六感:发作间期颅内脑电图在确定癫痫网络的局灶性方面能增加多少价值?

The sixth sense: how much does interictal intracranial EEG add to determining the focality of epileptic networks?

作者信息

Gallagher Ryan S, Sinha Nishant, Pattnaik Akash R, Ojemann William K S, Lucas Alfredo, LaRocque Joshua J, Bernabei John M, Greenblatt Adam S, Sweeney Elizabeth M, Cajigas Iahn, Chen H Isaac, Davis Kathryn A, Conrad Erin C, Litt Brian

机构信息

Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Brain Commun. 2024 Sep 27;6(5):fcae320. doi: 10.1093/braincomms/fcae320. eCollection 2024.

Abstract

Intracranial EEG is used for two main purposes: to determine (i) if epileptic networks are amenable to focal treatment and (ii) where to intervene. Currently, these questions are answered qualitatively and differently across centres. There is a need to quantify the focality of epileptic networks systematically, which may guide surgical decision-making, enable large-scale data analysis and facilitate multi-centre prospective clinical trials. We analysed interictal data from 101 patients with drug-resistant epilepsy who underwent pre-surgical evaluation with intracranial EEG at a single centre. We chose interictal data because of its potential to reduce the morbidity and cost associated with ictal recording. Sixty-five patients had unifocal seizure onset on intracranial EEG, and 36 were non-focal or multi-focal. We quantified the spatial dispersion of implanted electrodes and interictal intracranial EEG abnormalities for each patient. We compared these measures against the '5 Sense Score,' a pre-implant prediction of the likelihood of focal seizure onset, assessed the ability to predict unifocal seizure onset by combining these metrics and evaluated how predicted focality relates to subsequent treatment and outcomes. The spatial dispersion of intracranial EEG electrodes predicted network focality with similar performance to the 5-SENSE score [area under the receiver operating characteristic curve = 0.68 (95% confidence interval 0.57, 0.78)], indicating that electrode placement accurately reflected pre-implant information. A cross-validated model combining the 5-SENSE score and the spatial dispersion of interictal intracranial EEG abnormalities significantly improved this prediction [area under the receiver operating characteristic curve = 0.79 (95% confidence interval 0.70, 0.88); < 0.05]. Predictions from this combined model differed between surgical- from device-treated patients with an area under the receiver operating characteristic curve of 0.81 (95% confidence interval 0.68, 0.85) and between patients with good and poor post-surgical outcome at 2 years with an area under the receiver operating characteristic curve of 0.70 (95% confidence interval 0.56, 0.85). Spatial measures of interictal intracranial EEG abnormality significantly improved upon pre-implant predictions of network focality by area under the receiver operating characteristic curve and increased sensitivity in a single-centre study. Quantified focality predictions related to ultimate treatment strategy and surgical outcomes. While the 5-SENSE score weighed for specificity in their multi-centre validation to prevent unnecessary implantation, sensitivity improvement found in our single-centre study by including intracranial EEG may aid the decision on whom to perform the focal intervention. We present this study as an important step in building standardized, quantitative tools to guide epilepsy surgery.

摘要

颅内脑电图主要用于两个目的

确定(i)癫痫网络是否适合局部治疗以及(ii)干预位置。目前,这些问题在各中心的回答是定性的且各不相同。有必要系统地量化癫痫网络的局灶性,这可能会指导手术决策、实现大规模数据分析并促进多中心前瞻性临床试验。我们分析了101例耐药性癫痫患者的发作间期数据,这些患者在单一中心接受了颅内脑电图的术前评估。我们选择发作间期数据是因为其有可能降低与发作期记录相关的发病率和成本。65例患者颅内脑电图显示单灶性发作起始,36例为非局灶性或多灶性。我们量化了每位患者植入电极的空间离散度以及发作间期颅内脑电图异常情况。我们将这些指标与“5感评分”(植入前对局灶性发作起始可能性的预测)进行比较,评估通过组合这些指标预测单灶性发作起始的能力,并评估预测的局灶性与后续治疗及结果的关系。颅内脑电图电极的空间离散度预测网络局灶性的表现与5感评分相似[受试者操作特征曲线下面积 = 0.68(95%置信区间0.57,0.78)],表明电极放置准确反映了植入前信息。一个结合5感评分和发作间期颅内脑电图异常空间离散度的交叉验证模型显著改善了这一预测[受试者操作特征曲线下面积 = 0.79(95%置信区间0.70,0.88);P < 0.05]。该组合模型的预测在接受手术治疗与接受设备治疗的患者之间有所不同,受试者操作特征曲线下面积为0.81(95%置信区间0.68,0.85),在术后2年手术效果良好与不佳的患者之间也有所不同,受试者操作特征曲线下面积为0.70(95%置信区间0.56,0.85)。发作间期颅内脑电图异常的空间测量在受试者操作特征曲线下面积方面显著改善了植入前对网络局灶性的预测,并在一项单中心研究中提高了敏感性。量化的局灶性预测与最终治疗策略和手术结果相关。虽然5感评分在多中心验证中注重特异性以防止不必要的植入,但我们在单中心研究中通过纳入颅内脑电图发现的敏感性提高可能有助于决定对谁进行局部干预。我们将这项研究作为构建标准化、定量工具以指导癫痫手术的重要一步呈现出来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e5c/11495218/efb6aecefe86/fcae320_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验