Suppr超能文献

用于从发作间期数据预测致痫区和手术成功率的特征向量生物标志物。

Eigenvector biomarker for prediction of epileptogenic zones and surgical success from interictal data.

作者信息

Roy Sayantika, Varillas Armelle, Pereira Emily A, Myers Patrick, Kamali Golnoosh, Gunnarsdottir Kristin M, Crone Nathan E, Rouse Adam G, Cheng Jennifer J, Kinsman Michael J, Landazuri Patrick, Uysal Utku, Ulloa Carol M, Cameron Nathaniel, Inati Sara, Zaghloul Kareem A, Boerwinkle Varina L, Wyckoff Sarah, Barot Niravkumar, González-Martínez Jorge, Kang Joon Y, Sarma Sridevi V

机构信息

University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.

出版信息

Front Netw Physiol. 2025 May 20;5:1565882. doi: 10.3389/fnetp.2025.1565882. eCollection 2025.

Abstract

INTRODUCTION

More than 50 million people worldwide suffer from epilepsy. Approximately 30% of epileptic patients suffer from medically refractory epilepsy (MRE), which means that over 15 million people must seek extensive treatment. One such treatment involves surgical removal of the epileptogenic zone (EZ) of the brain. However, because there is no clinically validated biomarker of the EZ, surgical success rates vary between 30%-70%. The current standard for EZ localization often requires invasive monitoring of patients for several weeks in the hospital during which intracranial EEG (iEEG) data is captured. This process is time-consuming as the clinical team must wait for seizures and visually interpret the iEEG during these events. Hence, an iEEG biomarker that does not rely on seizure observations is desirable to improve EZ localization and surgical success rates. Recently, the source-sink index (SSI) was proposed as an interictal (between seizure) biomarker of the EZ, which captures regional interactions in the brain and in particular identifies the EZ as regions being inhibited ("sinks") by neighbors ("sources") when patients are not seizing. The SSI only requires 5-min snapshots of interictal iEEG recordings. However, one limitation of the SSI is that it is computed heuristically from the parameters of dynamical network models (DNMs).

METHODS

In this work, we propose a formal method for detecting sink regions from DNMs, which has a strong foundation in linear systems theory. In particular, the steady-state solution of the DNM highlights the sinks and is characterized by the leading eigenvector of the state-transition matrix of the DNM. To test this, we build patient-specific DNMs from interictal iEEG data collected from 65 patients treated across 6 centers. From each DNM, we compute the average leading eigenvectors and evaluate their potential as a biomarker to accurately predict EZ and surgical success.

RESULTS

Our findings show the ability of the leading eigenvector to accurately predict EZ (average accuracy 66.81% ± 0.19%) and surgical success (average accuracy 71.9% ± 0.22%) with data from 65 patients across 6 centers from 5 min of data, which we show is comparable with the current method of localizing the EZ over several weeks.

DISCUSSION

This eigenvector biomarker has the potential to assist clinicians in localizing the EZ quickly and thus increase surgical success in patients with MRE, resulting in an improvement in patient care and quality of life.

摘要

引言

全球有超过5000万人患有癫痫。约30%的癫痫患者患有药物难治性癫痫(MRE),这意味着超过1500万人必须寻求广泛的治疗。其中一种治疗方法是手术切除大脑的致痫区(EZ)。然而,由于目前尚无经临床验证的EZ生物标志物,手术成功率在30%至70%之间波动。当前EZ定位的标准方法通常需要对患者进行数周的侵入性监测,在此期间采集颅内脑电图(iEEG)数据。这个过程很耗时,因为临床团队必须等待癫痫发作,并在发作期间对iEEG进行视觉解读。因此,需要一种不依赖癫痫发作观察的iEEG生物标志物,以提高EZ定位和手术成功率。最近,源汇指数(SSI)被提出作为EZ的发作间期(两次发作之间)生物标志物,它捕捉大脑中的区域相互作用,特别是在患者未发作时,将EZ识别为被相邻区域(“源”)抑制的区域(“汇”)。SSI只需要5分钟的发作间期iEEG记录快照。然而,SSI的一个局限性在于它是从动态网络模型(DNM)的参数中启发式计算得出的。

方法

在这项工作中,我们提出了一种从DNM中检测汇区域的形式化方法,该方法在线性系统理论中有坚实的基础。特别是,DNM的稳态解突出了汇区域,并由DNM状态转移矩阵的主导特征向量来表征。为了对此进行测试,我们根据从6个中心治疗的65名患者收集的发作间期iEEG数据构建患者特异性DNM。从每个DNM中,我们计算平均主导特征向量,并评估它们作为生物标志物准确预测EZ和手术成功的潜力。

结果

我们的研究结果表明,主导特征向量能够利用来自6个中心的65名患者5分钟的数据准确预测EZ(平均准确率66.81%±0.19%)和手术成功(平均准确率71.9%±0.22%),我们证明这与当前数周定位EZ的方法相当。

讨论

这种特征向量生物标志物有潜力帮助临床医生快速定位EZ,从而提高MRE患者的手术成功率,改善患者护理和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43c3/12129916/911f233d6ddf/fnetp-05-1565882-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验