Suppr超能文献

从颅内脑电图引导癫痫手术的定量方法。

Quantitative approaches to guide epilepsy surgery from intracranial EEG.

机构信息

Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.

Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Brain. 2023 Jun 1;146(6):2248-2258. doi: 10.1093/brain/awad007.

Abstract

Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical systems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we specifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 patients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach clinical trials and hope to improve the lives of future patients.

摘要

在过去的 10 年中,提高癫痫手术效果的动力激发了人们广泛关注从颅内 EEG(iEEG)定量指导癫痫手术的方法。许多患者未能实现无癫痫发作,部分原因是主观 iEEG 解释存在挑战。为了解决这一临床需求,已经使用各种方法开发了定量 iEEG 分析,涵盖了发作、发作间期及其转换的研究,并包括电描记信号分析、动力系统建模、机器学习和图论等一系列技术。不幸的是,许多方法无法推广到新数据,并且对病理学和电极放置的差异敏感。在这里,我们批判性地回顾了从 iEEG 中识别致痫区的计算方法的选定文献。我们强调了该领域许多研究中共同存在的共享方法学挑战,并提出了解决这些挑战的方法。一个根本的共同陷阱是缺乏开源、高质量的数据,我们特别通过共享一个包含>100 名患者的集中式高质量、标记良好、多中心数据集来解决这个问题,以支持更大和更严格的研究。最终,我们提供了一个路线图,以帮助这些工具进入临床试验,并希望改善未来患者的生活。

相似文献

6
7
Learn how to interpret and use intracranial EEG findings.学习如何解读和使用颅内脑电图的发现。
Epileptic Disord. 2024 Feb;26(1):1-59. doi: 10.1002/epd2.20190. Epub 2024 Feb 13.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验