Suppr超能文献

用于增强假新闻检测的文本-图像多模态融合模型。

Text-image multimodal fusion model for enhanced fake news detection.

作者信息

Lin Szu-Yin, Chen Yen-Chiu, Chang Yu-Han, Lo Shih-Hsin, Chao Kuo-Ming

机构信息

Department of Management Science, National Yang Ming Chiao Tung University, Hsinchu.

Department of Information Management, Chung Hua University, Hsinchu.

出版信息

Sci Prog. 2024 Oct-Dec;107(4):368504241292685. doi: 10.1177/00368504241292685.

Abstract

In the era of rapid internet expansion and technological progress, discerning real from fake news poses a growing challenge, exposing users to potential misinformation. The existing literature primarily focuses on analyzing individual features in fake news, overlooking multimodal feature fusion recognition. Compared to single-modal approaches, multimodal fusion allows for a more comprehensive and enriched capture of information from different data modalities (such as text and images), thereby improving the performance and effectiveness of the model. This study proposes a model using multimodal fusion to identify fake news, aiming to curb misinformation. The framework integrates textual and visual information, using early fusion, joint fusion and late fusion strategies to combine them. The proposed framework processes textual and visual information through data cleaning and feature extraction before classification. Fake news classification is accomplished through a model, achieving accuracy of 85% and 90% in the Gossipcop and Fakeddit datasets, with F1-scores of 90% and 88%, showcasing its performance. The study presents outcomes across different training periods, demonstrating the effectiveness of multimodal fusion in combining text and image recognition for combating fake news. This research contributes significantly to addressing the critical issue of misinformation, emphasizing a comprehensive approach for detection accuracy enhancement.

摘要

在互联网快速扩张和技术进步的时代,辨别真假新闻面临着日益严峻的挑战,使用户容易受到潜在错误信息的影响。现有文献主要集中于分析假新闻中的个体特征,而忽视了多模态特征融合识别。与单模态方法相比,多模态融合能够更全面、丰富地从不同数据模态(如文本和图像)中捕捉信息,从而提高模型的性能和有效性。本研究提出一种使用多模态融合来识别假新闻的模型,旨在遏制错误信息。该框架整合文本和视觉信息,采用早期融合、联合融合和后期融合策略将它们结合起来。所提出的框架在分类之前通过数据清理和特征提取来处理文本和视觉信息。假新闻分类通过一个模型完成,在Gossipcop和Fakeddit数据集中分别达到了85%和90%的准确率,F1分数分别为90%和88%,展示了其性能。该研究展示了不同训练时期的结果,证明了多模态融合在结合文本和图像识别以打击假新闻方面的有效性。这项研究对解决错误信息这一关键问题做出了重大贡献,强调了采用综合方法来提高检测准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0575/11500224/2825bb2c793a/10.1177_00368504241292685-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验