Suppr超能文献

应用调查权重于有序回归模型,以改善在具有有序结果的因变量样本中的推断。

Applying survey weights to ordinal regression models for improved inference in outcome-dependent samples with ordinal outcomes.

机构信息

Dalla Lana School of Public Health, University of Toronto, ON, Canada.

Department of Epidemiology and Biostatistics, Western University, ON, Canada.

出版信息

Stat Methods Med Res. 2024 Nov;33(11-12):2007-2026. doi: 10.1177/09622802241282091. Epub 2024 Oct 23.

Abstract

Researchers often use outcome-dependent sampling to study the exposure-outcome association. The case-control study is a widely used example of outcome-dependent sampling when the outcome is binary. When the outcome is ordinal, standard ordinal regression models generally produce biased coefficients when the sampling fractions depend on the values of the outcome variable. To address this problem, we studied the performance of survey-weighted ordinal regression models with weights inversely proportional to the sampling fractions. Through an extensive simulation study, we compared the performance of four ordinal regression models (SM: stereotype model; AC: adjacent-category logit model; CR: continuation-ratio logit model; and CM: cumulative logit model), with and without sampling weights under outcome-dependent sampling. We observed that when using weights, all four models produced estimates with negligible bias of all regression coefficients. Without weights, only stereotype model and adjacent-category logit model produced estimates with negligible to low bias for all coefficients except for the intercepts in all scenarios. In one scenario, the unweighted continuation-ratio logit model also produced estimates with low bias. The weighted stereotype model and adjacent-category logit model also produced estimates with lower relative root mean square errors compared to the unweighted models in most scenarios. In some of the scenarios with unevenly distributed categories, the weighted continuation-ratio logit model and cumulative logit model produced estimates with lower relative root mean square errors compared to the respective unweighted models. We used a study of knee osteoarthritis as an example.

摘要

研究人员通常使用依结局抽样来研究暴露与结局的关联。当结局为二分类时,病例对照研究是一种广泛应用的依结局抽样方法。当结局为有序分类时,标准的有序回归模型在抽样分数依赖于结局变量的值时通常会产生有偏的系数。为了解决这个问题,我们研究了采用与抽样分数成反比的权重的调查加权有序回归模型的性能。通过广泛的模拟研究,我们比较了四种有序回归模型(SM:刻板模型;AC:相邻类别对数模型;CR:连续比对数模型;CM:累积对数模型)在依结局抽样下有无抽样权重的性能。我们发现,使用权重时,所有四个模型都产生了所有回归系数几乎没有偏差的估计值。没有权重时,只有刻板模型和相邻类别对数模型在所有情况下除了截距外,除了截距外,所有系数的估计值都有很小到低的偏差。在一种情况下,未加权的连续比对数模型也产生了低偏差的估计值。在大多数情况下,加权的刻板模型和相邻类别对数模型与未加权模型相比,产生的估计值具有较低的相对均方根误差。在某些类别分布不均匀的情况下,加权的连续比对数模型和累积对数模型与各自的未加权模型相比,产生的估计值具有较低的相对均方根误差。我们以膝骨关节炎的研究为例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b05/11577697/9d603f800989/10.1177_09622802241282091-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验