Suppr超能文献

CellSAM:通过非对称大规模视觉模型特征蒸馏聚合网络推进病理图像细胞分割

CellSAM: Advancing Pathologic Image Cell Segmentation via Asymmetric Large-Scale Vision Model Feature Distillation Aggregation Network.

作者信息

Ma Xiao, Huang Jin, Long Mengping, Li Xiaoxiao, Ye Zhaoyi, Hu Wanting, Yalikun Yaxiaer, Wang Du, Hu Taobo, Mei Liye, Lei Cheng

机构信息

The Institute of Technological Sciences, Wuhan University, Wuhan, China.

Department of Pathology, Peking University Cancer Hospital, Beijing, China.

出版信息

Microsc Res Tech. 2025 Feb;88(2):501-515. doi: 10.1002/jemt.24716. Epub 2024 Oct 23.

Abstract

Segment anything model (SAM) has attracted extensive interest as a potent large-scale image segmentation model, with prior efforts adapting it for use in medical imaging. However, the precise segmentation of cell nucleus instances remains a formidable challenge in computational pathology, given substantial morphological variations and the dense clustering of nuclei with unclear boundaries. This study presents an innovative cell segmentation algorithm named CellSAM. CellSAM has the potential to improve the effectiveness and precision of disease identification and therapy planning. As a variant of SAM, CellSAM integrates dual-image encoders and employs techniques such as knowledge distillation and mask fusion. This innovative model exhibits promising capabilities in capturing intricate cell structures and ensuring adaptability in resource-constrained scenarios. The experimental results indicate that this structure effectively enhances the quality and precision of cell segmentation. Remarkably, CellSAM demonstrates outstanding results even with minimal training data. In the evaluation of particular cell segmentation tasks, extensive comparative analyzes show that CellSAM outperforms both general fundamental models and state-of-the-art (SOTA) task-specific models. Comprehensive evaluation metrics yield scores of 0.884, 0.876, and 0.768 for mean accuracy, recall, and precision respectively. Extensive experiments show that CellSAM excels in capturing subtle details and complex structures and is capable of segmenting cells in images accurately. Additionally, CellSAM demonstrates excellent performance on clinical data, indicating its potential for robust applications in treatment planning and disease diagnosis, thereby further improving the efficiency of computer-aided medicine.

摘要

分割一切模型(SAM)作为一种强大的大规模图像分割模型引起了广泛关注,之前已有研究将其应用于医学成像。然而,在计算病理学中,细胞核实例的精确分割仍然是一项艰巨的挑战,因为细胞核存在显著的形态变异且边界密集聚类不清晰。本研究提出了一种名为CellSAM的创新性细胞分割算法。CellSAM有潜力提高疾病识别和治疗规划的有效性和精确性。作为SAM的一个变体,CellSAM集成了双图像编码器,并采用了知识蒸馏和掩码融合等技术。这种创新模型在捕捉复杂细胞结构以及确保在资源受限场景中的适应性方面展现出了有前景的能力。实验结果表明,这种结构有效地提高了细胞分割的质量和精确性。值得注意的是,即使训练数据极少,CellSAM也能展现出出色的结果。在特定细胞分割任务的评估中,广泛的对比分析表明,CellSAM优于一般的基础模型和当前最先进的(SOTA)特定任务模型。综合评估指标的平均准确率、召回率和精确率分别为0.884、0.876和0.768。大量实验表明,CellSAM在捕捉细微细节和复杂结构方面表现出色,能够准确地分割图像中的细胞。此外,CellSAM在临床数据上也表现出优异的性能,表明其在治疗规划和疾病诊断中的强大应用潜力,从而进一步提高计算机辅助医学的效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验