Suppr超能文献

自我监督增强了数字病理学中基于实例的多实例学习方法:一项基准研究。

Self-supervision enhances instance-based multiple instance learning methods in digital pathology: a benchmark study.

作者信息

Mammadov Ali, Le Folgoc Loïc, Adam Julien, Buronfosse Anne, Hayem Gilles, Hocquet Guillaume, Gori Pietro

机构信息

Télécom Paris (Institut Polytechnique de Paris), Palaiseau, France.

Groupe Hospitalier Paris Saint-Joseph, Paris, France.

出版信息

J Med Imaging (Bellingham). 2025 Nov;12(6):061404. doi: 10.1117/1.JMI.12.6.061404. Epub 2025 Jun 3.

Abstract

PURPOSE

Multiple instance learning (MIL) has emerged as the best solution for whole slide image (WSI) classification. It consists of dividing each slide into patches, which are treated as a bag of instances labeled with a global label. MIL includes two main approaches: instance-based and embedding-based. In the former, each patch is classified independently, and then, the patch scores are aggregated to predict the bag label. In the latter, bag classification is performed after aggregating patch embeddings. Even if instance-based methods are naturally more interpretable, embedding-based MILs have usually been preferred in the past due to their robustness to poor feature extractors. Recently, the quality of feature embeddings has drastically increased using self-supervised learning (SSL). Nevertheless, many authors continue to endorse the superiority of embedding-based MIL.

APPROACH

We conduct 710 experiments across 4 datasets, comparing 10 MIL strategies, 6 self-supervised methods with 4 backbones, 4 foundation models, and various pathology-adapted techniques. Furthermore, we introduce 4 instance-based MIL methods, never used before in the pathology domain.

RESULTS

We show that with a good SSL feature extractor, simple instance-based MILs, with very few parameters, obtain similar or better performance than complex, state-of-the-art (SOTA) embedding-based MIL methods, setting new SOTA results on the BRACS and Camelyon16 datasets.

CONCLUSION

As simple instance-based MIL methods are naturally more interpretable and explainable to clinicians, our results suggest that more effort should be put into well-adapted SSL methods for WSI rather than into complex embedding-based MIL methods.

摘要

目的

多实例学习(MIL)已成为全切片图像(WSI)分类的最佳解决方案。它包括将每个切片划分为多个图像块,这些图像块被视为带有全局标签的实例包。MIL包括两种主要方法:基于实例的方法和基于嵌入的方法。在前者中,每个图像块独立分类,然后汇总图像块分数以预测包标签。在后者中,在汇总图像块嵌入后进行包分类。即使基于实例的方法本质上更具可解释性,但由于其对较差特征提取器的鲁棒性,基于嵌入的MIL在过去通常更受青睐。最近,使用自监督学习(SSL),特征嵌入的质量有了大幅提高。然而,许多作者仍然支持基于嵌入的MIL的优越性。

方法

我们在4个数据集上进行了710次实验,比较了10种MIL策略、6种自监督方法与4种骨干网络、4种基础模型以及各种病理适应技术。此外,我们还引入了4种基于实例的MIL方法,这些方法在病理领域以前从未使用过。

结果

我们表明,使用良好的SSL特征提取器,参数极少的简单基于实例的MIL能够获得与复杂的、当前最先进的(SOTA)基于嵌入的MIL方法相似或更好的性能,在BRACS和Camelyon16数据集上创造了新的SOTA结果。

结论

由于简单的基于实例的MIL方法对临床医生来说本质上更具可解释性,我们的结果表明,应该在适用于WSI的SSL方法上投入更多努力,而不是在复杂的基于嵌入的MIL方法上。

相似文献

10
Dressings and topical agents for treating pressure ulcers.用于治疗压疮的敷料和外用剂。
Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD011947. doi: 10.1002/14651858.CD011947.pub2.

本文引用的文献

1
Improving Representation Learning for Histopathologic Images with Cluster Constraints.利用聚类约束改进组织病理学图像的表征学习
Proc IEEE Int Conf Comput Vis. 2023;2023:21347-21357. doi: 10.1109/iccv51070.2023.01957. Epub 2024 Jan 15.
2
Towards a general-purpose foundation model for computational pathology.迈向计算病理学的通用基础模型。
Nat Med. 2024 Mar;30(3):850-862. doi: 10.1038/s41591-024-02857-3. Epub 2024 Mar 19.
3
Cross-scale multi-instance learning for pathological image diagnosis.用于病理图像诊断的跨尺度多实例学习
Med Image Anal. 2024 May;94:103124. doi: 10.1016/j.media.2024.103124. Epub 2024 Feb 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验