Li Fangzhou, Zhao Jian, Li Bin, Han Zechao, Guo Linglan, Han Peicheng, Kim Hyun Ho, Su Yanjie, Zhu Li-Min, Shen Daozhi
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
ACS Nano. 2024 Nov 5;18(44):30658-30667. doi: 10.1021/acsnano.4c09581. Epub 2024 Oct 23.
Energy harvesting from ubiquitous natural water vapor based on moisture electric generator (MEG) technology holds great potential to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges of low output, and a single MEG complemented with another form of energy harvesting for achieving high power has seldom been demonstrated. Herein, we report a flexible and efficient hybrid generator capable of harvesting moisture and tribo energies simultaneously, both from the source of water droplets. The moisture electric and triboelectric layers are based on a water-absorbent citric acid (CA)-mediated polyglutamic acid (PGA) hydrogel and porous electret expanded polytetrafluoroethylene (E-PTFE), respectively. Such a waterproof E-PTFE film not only enables efficient triboelectrification with water droplets' contact but also facilitates water vapor to be transferred into the hydrogel layer for moisture electricity generation. A single hybrid generator under water droplets' impact delivers a DC voltage of 0.55 V and a peak current density of 120 μA cm from the MEG, together with a simultaneous AC output voltage of 300 V and a current of 400 μA from the complementary water-based triboelectric generator (TEG) side. Such a hybrid generator can work even under harsh wild environments with 5 °C cold and saltwater impacts. Significantly, an optical alarm and wireless communication system for wild, complex, and emergency scenarios is demonstrated with power from the hybrid generators. This work expands the applications of water-based electricity generation technologies and provides insight into harvesting multiple potential energies in the natural environment with high output.
基于湿气发电机(MEG)技术从无处不在的自然水蒸气中收集能量,在为便携式电子设备、物联网和无线传输供电方面具有巨大潜力。然而,大多数设备仍面临低输出的挑战,并且很少有通过单个MEG与另一种能量收集形式互补来实现高功率的实例。在此,我们报道了一种灵活高效的混合发电机,它能够同时从水滴源收集湿气和摩擦能量。湿气发电层和摩擦发电层分别基于吸水性柠檬酸(CA)介导的聚谷氨酸(PGA)水凝胶和多孔驻极体聚四氟乙烯(E-PTFE)。这种防水的E-PTFE薄膜不仅能通过与水滴接触实现高效摩擦起电,还能促进水蒸气转移到水凝胶层以进行湿气发电。在水滴冲击下,单个混合发电机从MEG输出0.55 V的直流电压和120 μA/cm²的峰值电流密度,同时从互补的水基摩擦发电机(TEG)侧输出300 V的交流输出电压和400 μA的电流。这种混合发电机即使在5℃低温和盐水冲击的恶劣野外环境下也能工作。值得注意的是,利用混合发电机的电力展示了一种适用于野外、复杂和紧急场景的光学报警和无线通信系统。这项工作拓展了水基发电技术的应用,并为在自然环境中高输出地收集多种潜在能量提供了思路。