Lang Stefan, Jokeit Moritz, Kim Ji Hyun, Urbanschitz Lukas, Fisler Luca, Torrez Carlos, Cornaz Frédéric, Snedeker Jess G, Farshad Mazda, Widmer Jonas
Spine Biomechanics, Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
Spine Deform. 2025 Mar;13(2):423-431. doi: 10.1007/s43390-024-00990-0. Epub 2024 Oct 23.
Accurate landmark detection is essential for precise analysis of anatomical structures, supporting diagnosis, treatment planning, and monitoring in patients with spinal deformities. Conventional methods rely on laborious landmark identification by medical experts, which motivates automation. The proposed deep learning pipeline processes bi-planar radiographs to determine spinopelvic parameters and Cobb angles without manual supervision.
The dataset used for training and evaluation consisted of 555 bi-planar radiographs from un-instrumented patients, which were manually annotated by medical professionals. The pipeline performed a pre-processing step to determine regions of interest, including the cervical spine, thoracolumbar spine, sacrum, and pelvis. For each ROI, a segmentation network was trained to identify vertebral bodies and pelvic landmarks. The U-Net architecture was trained on 455 bi-planar radiographs using binary cross-entropy loss. The post-processing algorithm determined spinal alignment and angular parameters based on the segmentation output. We evaluated the pipeline on a test set of 100 previously unseen bi-planar radiographs, using the mean absolute difference between annotated and predicted landmarks as the performance metric. The spinopelvic parameter predictions of the pipeline were compared to the measurements of two experienced medical professionals using intraclass correlation coefficient (ICC) and mean absolute deviation (MAD).
The pipeline was able to successfully predict the Cobb angles in 61% of all test cases and achieved mean absolute differences of 3.3° (3.6°) and averaged ICC of 0.88. For thoracic kyphosis, lumbar lordosis, sagittal vertical axis, sacral slope, pelvic tilt, and pelvic incidence, the pipeline produced reasonable outputs in 69%, 58%, 86%, 85%, 84%, and 84% of the cases. The MAD was 5.6° (7.8°), 4.7° (4.3°), 2.8 mm (3.0 mm), 4.5° (7.2°), 1.8° (1.8°), and 5.3° (7.7°), while the ICC was measured at 0.69, 0.82, 0.99, 0.61, 0.96, and 0.70, respectively.
Despite limitations in patients with severe pathologies and high BMI, the pipeline automatically predicted coronal and sagittal spinopelvic parameters, which has the potential to simplify clinical routines and large-scale retrospective data analysis.
准确的标志点检测对于精确分析解剖结构至关重要,有助于脊柱畸形患者的诊断、治疗规划和监测。传统方法依赖医学专家费力地识别标志点,这推动了自动化的发展。所提出的深度学习管道可处理双平面X线片,无需人工监督即可确定脊柱骨盆参数和 Cobb 角。
用于训练和评估的数据集包括来自未接受器械治疗患者的555张双平面X线片,这些片子由医学专业人员进行了手动标注。该管道执行了一个预处理步骤来确定感兴趣区域,包括颈椎、胸腰椎、骶骨和骨盆。对于每个感兴趣区域,训练了一个分割网络来识别椎体和骨盆标志点。使用二元交叉熵损失在455张双平面X线片上训练U-Net架构。后处理算法根据分割输出确定脊柱排列和角度参数。我们在100张之前未见过的双平面X线片的测试集上评估了该管道,使用标注和预测标志点之间的平均绝对差作为性能指标。使用组内相关系数(ICC)和平均绝对偏差(MAD)将该管道的脊柱骨盆参数预测结果与两名经验丰富的医学专业人员的测量结果进行比较。
该管道能够在所有测试病例的61%中成功预测 Cobb 角,平均绝对差为3.3°(3.6°),平均 ICC 为0.88。对于胸椎后凸、腰椎前凸、矢状垂直轴、骶骨斜率、骨盆倾斜和骨盆入射角,该管道在69%、58%、86%、85%、84%和84%的病例中产生了合理的输出。MAD分别为5.6°(7.8°)、4.7°(4.3°)、2.8毫米(3.0毫米)、4.5°(7.2°)、1.8°(1.8°)和5.3°(7.7°),而 ICC 分别为0.69、0.82、0.99、0.61、0.96和0.70。
尽管在患有严重疾病和高BMI的患者中存在局限性,但该管道能够自动预测冠状面和矢状面的脊柱骨盆参数,这有可能简化临床常规操作和大规模回顾性数据分析。