IEEE J Biomed Health Inform. 2021 Jul;25(7):2710-2721. doi: 10.1109/JBHI.2021.3057647. Epub 2021 Jul 27.
Vertebra segmentation from biplanar whole-spine radiographs is highly demanded in the quantitative assessment of scoliosis and the resultant sagittal deformities. However, automatic vertebra segmentation from the radiographs is extremely challenging due to the low contrast, blended boundaries, and superimposition of many layers, especially in the sagittal plane. To alleviate these problems, we propose a lightweight pyramid attention quick refinement network (LPAQR-Net) for efficient and accurate vertebra segmentation. The LPAQR-Net consists of three components: (1) a lightweight backbone network (LB-Net) to prune network parameters and memory footprints to strike an optimal balance between speed and accuracy, (2) a series of global attention refinement (GAR) modules to selectively reuse low-level features to facilitate the feature refinement, and (3) an attention-based atrous spatial pyramid pooling (A-ASPP) module to extract weighted pyramid contexts to improve the segmentation of blurred vertebrae. Moreover, the multi-class training strategy is employed to alleviate the over-segmentation of adjacent vertebrae. Evaluation results on both frontal and lateral radiographs of 332 AIS patients show our method achieves accurate vertebra segmentation with significant reductions in inference time and computational demands compared to the state-of-the-art. Meanwhile, results on the public AASCE2019 dataset also demonstrate the good generalization ability of our model. It is the first attempt to explore the lightweight network for vertebra segmentation from biplanar whole-spine radiographs. It simulates radiologists gathering nearby contexts for accurate and robust vertebra boundary inference. The method can provide efficient and accurate vertebra segmentation for clinicians to perform a fast and reproducible spinal deformity evaluation.
双平面全脊柱 X 光片的椎体分割在脊柱侧凸和由此产生的矢状面畸形的定量评估中需求量很大。然而,由于对比度低、边界混合和多层叠加,尤其是在矢状面,自动从 X 光片中分割椎体极具挑战性。为了解决这些问题,我们提出了一种用于高效准确的椎体分割的轻量级金字塔注意快速细化网络(LPAQR-Net)。LPAQR-Net 由三个组件组成:(1)一个轻量级骨干网络(LB-Net),用于修剪网络参数和内存足迹,以在速度和准确性之间取得最佳平衡;(2)一系列全局注意细化(GAR)模块,用于选择性地重用低层次特征,以促进特征细化;(3)基于注意的空洞空间金字塔池化(A-ASPP)模块,用于提取加权金字塔上下文,以提高模糊椎体的分割效果。此外,采用多类训练策略来减轻相邻椎体的过度分割。对 332 例 AIS 患者的正位和侧位 X 光片的评估结果表明,与最先进的方法相比,我们的方法在推理时间和计算需求方面都实现了准确的椎体分割,并显著减少了。同时,在公共 AASCE2019 数据集上的结果也证明了我们模型的良好泛化能力。这是首次尝试探索用于双平面全脊柱 X 光片的椎体分割的轻量级网络。它模拟放射科医生收集附近的上下文信息,以进行准确和稳健的椎体边界推断。该方法可以为临床医生提供高效准确的椎体分割,以快速、可重复地进行脊柱畸形评估。