Suppr超能文献

用于 PROSTATEx 挑战赛公共数据集的质量控制以及整个腺体、区域和病变标注。

Quality control and whole-gland, zonal and lesion annotations for the PROSTATEx challenge public dataset.

机构信息

Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy.

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy.

出版信息

Eur J Radiol. 2021 May;138:109647. doi: 10.1016/j.ejrad.2021.109647. Epub 2021 Mar 10.

Abstract

PURPOSE

Radiomic features are promising quantitative parameters that can be extracted from medical images and employed to build machine learning predictive models. However, generalizability is a key concern, encouraging the use of public image datasets. We performed a quality assessment of the PROSTATEx training dataset and provide publicly available lesion, whole-gland, and zonal anatomy segmentation masks.

METHOD

Two radiology residents and two experienced board-certified radiologists reviewed the 204 prostate MRI scans (330 lesions) included in the training dataset. The quality of provided lesion coordinate was scored using the following scale: 0 = perfectly centered, 1 = within lesion, 2 = within the prostate without lesion, 3 = outside the prostate. All clearly detectable lesions were segmented individually slice-by-slice on T2-weighted and apparent diffusion coefficient images. With the same methodology, volumes of interest including the whole gland, transition, and peripheral zones were annotated.

RESULTS

Of the 330 available lesion identifiers, 3 were duplicates (1%). From the remaining, 218 received score = 0, 74 score = 1, 31 score = 2 and 4 score = 3. Overall, 299 lesions were verified and segmented. Independently of lesion coordinate score and other issues (e.g., lesion coordinates falling outside DICOM images, artifacts etc.), the whole prostate gland and zonal anatomy were also manually annotated for all cases.

CONCLUSION

While several issues were encountered evaluating the original PROSTATEx dataset, the improved quality and availability of lesion, whole-gland and zonal segmentations will increase its potential utility as a common benchmark in prostate MRI radiomics.

摘要

目的

放射组学特征是一种有前途的定量参数,可以从医学图像中提取出来,并用于构建机器学习预测模型。然而,可推广性是一个关键问题,鼓励使用公共图像数据集。我们对 PROSTATEx 训练数据集进行了质量评估,并提供了公共的病变、全腺体和区域解剖分割掩模。

方法

两名放射科住院医师和两名经验丰富的委员会认证放射科医生审查了训练数据集中包含的 204 例前列腺 MRI 扫描(330 个病变)。使用以下评分标准对提供的病变坐标质量进行评分:0=完全居中,1=在病变内,2=在无病变的前列腺内,3=在前列腺外。所有可清晰检测到的病变均在 T2 加权和表观扩散系数图像上逐片进行单独分割。使用相同的方法,注释了包括整个腺体、过渡区和周围区的感兴趣区域。

结果

330 个可用病变标识符中,有 3 个是重复的(1%)。其余的 218 个病变获得了评分=0,74 个病变获得了评分=1,31 个病变获得了评分=2,4 个病变获得了评分=3。总的来说,有 299 个病变得到了验证和分割。独立于病变坐标评分和其他问题(例如,病变坐标落在 DICOM 图像之外、伪影等),所有病例的整个前列腺腺体和区域解剖结构也都进行了手动注释。

结论

虽然在评估原始 PROSTATEx 数据集时遇到了一些问题,但病变、全腺体和区域分割的质量和可用性的提高将增加其作为前列腺 MRI 放射组学中常见基准的潜在效用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验