Suppr超能文献

混合变量图形建模框架,用于预测脊髓损伤患者的医院获得性压疮风险。

Mixed-variable graphical modeling framework towards risk prediction of hospital-acquired pressure injury in spinal cord injury individuals.

机构信息

Department of Health Science and Technology, ETH Zürich, 8006, Zürich, Switzerland.

Swiss Paraplegic Research (SPF), 6207, Nottwil, Switzerland.

出版信息

Sci Rep. 2024 Oct 23;14(1):25067. doi: 10.1038/s41598-024-75691-9.

Abstract

Developing machine learning (ML) methods for healthcare predictive modeling requires absolute explainability and transparency to build trust and accountability. Graphical models (GM) are key tools for this but face challenges like small sample sizes, mixed variables, and latent confounders. This paper presents a novel learning framework addressing these challenges by integrating latent variables using fast causal inference (FCI), accommodating mixed variables with predictive permutation conditional independence tests (PPCIT), and employing a systematic graphical embedding approach leveraging expert knowledge. This method ensures a transparent model structure and an explainable feature selection and modeling approach, achieving competitive prediction performance. For real-world validation, data of hospital-acquired pressure injuries (HAPI) among individuals with spinal cord injury (SCI) were used, where the approach achieved a balanced accuracy of 0.941 and an AUC of 0.983, outperforming most benchmarks. The PPCIT method also demonstrated superior accuracy and scalability over other benchmarks in causal discovery validation on synthetic datasets that closely resemble our real dataset. This holistic framework effectively addresses the challenges of mixed variables and explainable predictive modeling for disease onset, which is crucial for enabling transparency and interpretability in ML-based healthcare.

摘要

开发用于医疗保健预测建模的机器学习 (ML) 方法需要绝对的可解释性和透明度,以建立信任和问责制。图形模型 (GM) 是实现这一目标的关键工具,但面临着样本量小、混合变量和潜在混杂因素等挑战。本文提出了一种新颖的学习框架,通过使用快速因果推理 (FCI) 整合潜在变量、使用预测排列条件独立性检验 (PPCIT) 处理混合变量以及利用专家知识采用系统图形嵌入方法,解决了这些挑战。该方法确保了模型结构的透明性以及可解释的特征选择和建模方法,实现了具有竞争力的预测性能。在真实世界的验证中,我们使用了脊髓损伤 (SCI) 个体的医院获得性压力性损伤 (HAPI) 数据,该方法在平衡准确性方面达到了 0.941,AUC 达到了 0.983,优于大多数基准。在对我们的真实数据集非常相似的合成数据集上进行因果发现验证时,PPCIT 方法在准确性和可扩展性方面也优于其他基准。该整体框架有效地解决了混合变量和可解释预测建模在疾病发作方面的挑战,这对于实现基于机器学习的医疗保健的透明度和可解释性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4247/11499609/706213d0c10d/41598_2024_75691_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验