Suppr超能文献

机器学习在脊髓损伤患者压力性损伤预测模型中的应用。

Machine learning to develop a predictive model of pressure injury in persons with spinal cord injury.

机构信息

Research Service, James A. Haley Veterans' Hospital, Tampa, FL, USA.

College of Public Health, University of South Florida, Tampa, FL, USA.

出版信息

Spinal Cord. 2023 Sep;61(9):513-520. doi: 10.1038/s41393-023-00924-z. Epub 2023 Aug 19.

Abstract

STUDY DESIGN

A 5-year longitudinal, retrospective, cohort study.

OBJECTIVES

Develop a prediction model based on electronic health record (EHR) data to identify veterans with spinal cord injury/diseases (SCI/D) at highest risk for new pressure injuries (PIs).

SETTING

Structured (coded) and text EHR data, for veterans with SCI/D treated in a VHA SCI/D Center between October 1, 2008, and September 30, 2013.

METHODS

A total of 4709 veterans were available for analysis after randomly selecting 175 to act as a validation (gold standard) sample. Machine learning models were created using ten-fold cross validation and three techniques: (1) two-step logistic regression; (2) regression model employing adaptive LASSO; (3) and gradient boosting. Models based on each method were compared using area under the receiver-operating curve (AUC) analysis.

RESULTS

The AUC value for the gradient boosting model was 0.62 (95% CI = 0.54-0.70), for the logistic regression model it was 0.67 (95% CI = 0.59-0.75), and for the adaptive LASSO model it was 0.72 (95% CI = 0.65-80). Based on these results, the adaptive LASSO model was chosen for interpretation. The strongest predictors of new PI cases were having fewer total days in the hospital in the year before the annual exam, higher vs. lower weight and most severe vs. less severe grade of injury based on the American Spinal Cord Injury Association (ASIA) Impairment Scale.

CONCLUSIONS

While the analyses resulted in a potentially useful predictive model, clinical implications were limited because modifiable risk factors were absent in the models.

摘要

研究设计

一项为期 5 年的纵向、回顾性队列研究。

目的

基于电子健康记录(EHR)数据开发预测模型,以识别脊髓损伤/疾病(SCI/D)退伍军人中最有可能发生新的压力性损伤(PI)的人群。

设置

在 2008 年 10 月 1 日至 2013 年 9 月 30 日期间,在 VHA SCI/D 中心接受治疗的 SCI/D 退伍军人的结构化(编码)和文本 EHR 数据。

方法

在随机选择 175 名退伍军人作为验证(黄金标准)样本后,共有 4709 名退伍军人可用于分析。使用十折交叉验证和三种技术创建机器学习模型:(1)两步逻辑回归;(2)使用自适应 LASSO 的回归模型;(3)和梯度提升。使用接收者操作特征曲线(AUC)分析比较基于每种方法的模型。

结果

梯度提升模型的 AUC 值为 0.62(95%置信区间[CI] = 0.54-0.70),逻辑回归模型为 0.67(95% CI = 0.59-0.75),自适应 LASSO 模型为 0.72(95% CI = 0.65-0.80)。基于这些结果,选择自适应 LASSO 模型进行解释。新 PI 病例的最强预测因素是在年度检查前一年在医院的总住院天数较少、体重较高与较低以及根据美国脊髓损伤协会(ASIA)损伤量表的损伤程度较严重与较轻。

结论

虽然分析结果得出了一个潜在有用的预测模型,但由于模型中缺乏可修改的风险因素,临床意义有限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验