Suppr超能文献

用于水基卤化物流电池的软-硬两性离子添加剂。

Soft-hard zwitterionic additives for aqueous halide flow batteries.

机构信息

Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.

Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Nature. 2024 Nov;635(8037):89-95. doi: 10.1038/s41586-024-08079-4. Epub 2024 Oct 23.

Abstract

Aqueous redox flow batteries with halide-based catholytes (where the halogen atom (X) is Br or I) are promising for sustainable grid energy storage. However, the formation of polyhalides during electrochemical charging and the associated phase separation into X limits the operable state of charge (SoC), results in vaporization and self-discharge inefficiencies, and spurs complete device failure. Here we introduce soft-hard zwitterionic trappers (SH-ZITs) as complexing agents composed of a polyhalide-complexing 'soft' cationic motif and a water-soluble 'hard' anionic motif to enable homogeneous halide cycling. More than 300 structures were designed and 13 were characterized, showcasing the ability to complex polyhalides in homogeneous aqueous solution, to deter cation-exchange membrane crossover and to alter the electrochemical electrode mechanism. In flow battery cycling at a standard catholyte SoC of 66.6 per cent (stoichiometrically X), an average coulombic efficiency of more than 99.9 per cent at 40 milliamperes per square centimetre with no apparent decay was observed after more than 1,000 cycles over 2 months, with stability at elevated temperatures also demonstrated. Interestingly, SH-ZITs enable homogeneous cycling of the halide catholyte up to 90 per cent SoC at 2 moles per litre (47.7 ampere-hours per litre) for bromide, revealing previously unknown polyhalide regimes to be studied. Ultimately, SH-ZIT enables ultrahigh catholyte capacity utilization up to over 120 ampere-hours per litre at 80 per cent SoC with homogeneous cycling as well as the ability to pair with a zinc anode in a hybrid flow battery.

摘要

基于卤化物的水系氧化还原流电池(其中卤素原子 (X) 为 Br 或 I)在可持续电网储能方面具有广阔的前景。然而,在电化学充电过程中形成多卤化物,以及与之相关的 X 相分离,限制了可操作的充电状态 (SoC),导致蒸发和自放电效率低下,并促使设备完全失效。在这里,我们引入软-硬两性离子捕集剂 (SH-ZIT) 作为络合剂,由多卤化物络合的“软”阳离子基元和水溶性“硬”阴离子基元组成,以实现均匀的卤化物循环。设计了 300 多种结构,并对其中 13 种进行了表征,展示了在均相水溶液中络合多卤化物、阻止阳离子交换膜交叉和改变电化学电极机制的能力。在标准阴极电解液 SoC 为 66.6%(化学计量比为 X)的流电池循环中,在 40 毫安/平方厘米的电流密度下,平均库仑效率超过 99.9%,经过 2 个月 1000 多次循环后,没有明显的衰减,在高温下也表现出稳定性。有趣的是,SH-ZIT 能够使卤化物阴极电解液在 2 摩尔/升(47.7 安培小时/升)的条件下以 90%的 SoC 进行均匀循环,揭示了以前未知的多卤化物区域有待研究。最终,SH-ZIT 使阴极电解液的超高容量利用率高达 120 安培小时/升以上,可达 80%的 SoC,并具有均匀循环的能力,还能够与锌阳极在混合流电池中配对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验