Ghoshal Debjit, Paul Goutam, Sagar Srikrishna, Shank Cole, Hurley Lauren A, Hooper Nina, Tan Jeiwan, Burns Kory, Hachtel Jordan A, Ferguson Andrew J, Blackburn Jeffrey L, Lagemaat Jao van de, Miller Elisa M
Materials, Chemistry, and Computational Sciences Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Renewable & Sustainable Energy Institute (RASEI), Boulder, CO, 80303, USA.
Adv Mater. 2025 Jan;37(3):e2409825. doi: 10.1002/adma.202409825. Epub 2024 Oct 23.
2D materials, particularly transition metal dichalcogenides (TMDCs), have shown great potential for microelectronics and optoelectronics. However, a major challenge in commercializing these materials is the inability to control their doping at a wafer scale with high spatial fidelity. Interface chemistry is used with the underlying substrate oxide and concomitant exposure to visible light in ambient conditions for photo-dedoping wafer scale MoS. It is hypothesized that the oxide layer traps photoexcited holes, leaving behind long-lived electrons that become available for surface reactions with ambient air at sulfur vacancies (defect sites) resulting in dedoping. Additionally, high fidelity spatial control is showcased over the dedoping process, by laser writing, and fine control achieved over the degree of doping by modulating the illumination time and power density. This localized change in MoS doping density is very stable (at least 7 days) and robust to processing conditions like high temperature and vacuum. The scalability and ease of implementation of this approach can address one of the major issues preventing the "Lab to Fab" transition of 2D materials and facilitate its seamless integration for commercial applications in multi-logic devices, inverters, and other optoelectronic devices.
二维材料,特别是过渡金属二硫属化物(TMDCs),在微电子和光电子领域已展现出巨大潜力。然而,将这些材料商业化的一个主要挑战在于无法在晶圆尺度上以高空间保真度控制其掺杂。在环境条件下,利用界面化学与底层衬底氧化物结合,并伴随可见光照射,对晶圆尺度的MoS进行光去掺杂。据推测,氧化层捕获光激发的空穴,留下长寿命电子,这些电子可在硫空位(缺陷位点)与环境空气发生表面反应,从而实现去掺杂。此外,通过激光写入展示了在去掺杂过程中的高保真空间控制,并通过调节光照时间和功率密度对掺杂程度实现了精细控制。MoS掺杂密度的这种局部变化非常稳定(至少7天),并且对高温和真空等处理条件具有耐受性。这种方法的可扩展性和易于实施能够解决阻碍二维材料从“实验室到工厂”转变的主要问题之一,并促进其在多逻辑器件、逆变器和其他光电器件的商业应用中的无缝集成。