Hu Jinsuo, Sun Yuxin, Shi Wenjing, Wu Hao, Zhu Jianbo, Cheng Jinxuan, Jiao Lei, Jiang Xiaohan, Xie Liangjun, Qu Nuo, Li Fushan, Yu Zhiyuan, Zhang Qian, Liu Zihang, Guo Fengkai, Cai Wei, Sui Jiehe
National key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin, 150001, China.
School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology, Shenzhen, 518055, China.
Adv Mater. 2024 Dec;36(49):e2411738. doi: 10.1002/adma.202411738. Epub 2024 Oct 23.
Recently, YbCdSb-based Zintl compounds have been widely investigated owing to their extraordinary thermoelectric (TE) performance. However, its p orbitals of anions that determined the valence band structure are split due to crystal field splitting that provides a good platform for band manipulation by doping/alloying and, more importantly, the YbCdSb-based device has yet to be reported. In this work, single-phase YbCdZnSb is successfully obtained through precise chemical composition control. Then, YbMgSb-alloying increases the cationic vacancy defect formation energy and further optimizes carrier concentration. Moreover, the band structure of YbCdZnSb is subtly manipulated, and the underlying mechanism is experimentally explored. Combined with the reduced lattice thermal conductivity, a high peak ZT value of ∼1.43 at 700 K is obtained for YbCdZnMgSb. Subsequently, choosing FeSb as the diffusion barrier layer and adopting the transient liquid phase bonding technique, for the first time, it is demonstrated that YbCdSb/Mg(Sb, Bi) TE module with an ultrahigh conversion efficiency of ≈9.0% at a heat difference of 430 K. More importantly, this module displays good thermal stability. This work paves the way for YbCdSb materials and devices in mid-temperature heat recovery.
最近,基于YbCdSb的津特耳化合物因其卓越的热电(TE)性能而受到广泛研究。然而,由于晶体场分裂,决定价带结构的阴离子的p轨道发生分裂,这为通过掺杂/合金化进行能带调控提供了一个良好的平台,更重要的是,基于YbCdSb的器件尚未见报道。在这项工作中,通过精确的化学成分控制成功获得了单相YbCdZnSb。然后,YbMgSb合金化提高了阳离子空位缺陷形成能,并进一步优化了载流子浓度。此外,对YbCdZnSb的能带结构进行了巧妙调控,并通过实验探索了其潜在机制。结合降低的晶格热导率,YbCdZnMgSb在700 K时获得了约1.43的高峰值ZT值。随后,选择FeSb作为扩散阻挡层并采用瞬态液相键合技术,首次证明了YbCdSb/Mg(Sb, Bi)热电模块在430 K的热差下具有约9.0%的超高转换效率。更重要的是,该模块显示出良好的热稳定性。这项工作为YbCdSb材料及器件在中温热回收方面铺平了道路。