Research Centre "E. Piaggio", University of Pisa, Largo Lucio Lazzarino 1, Pisa, 56125, Italy.
Department of Information Engineering, University of Pisa, Pisa, Italy.
Part Fibre Toxicol. 2024 Oct 24;21(1):45. doi: 10.1186/s12989-024-00607-4.
It is well-known that nanoparticles sediment, diffuse and aggregate when dispersed in a fluid. Once they approach a cell monolayer, depending on the affinity or "stickiness" between cells and nanoparticles, they may adsorb instantaneously, settle slowly - in a time- and concentration-dependent manner - or even encounter steric hindrance and rebound. Therefore, the dose perceived by cells in culture may not necessarily be that initially administered. Methods for quantifying delivered dose are difficult to implement, as they require precise characterization of nanoparticles and exposure scenarios, as well as complex mathematical operations to handle the equations governing the system dynamics. Here we present a pipeline and a graphical user interface, DosiGUI, for application to the accurate nano-dosimetry of engineered nanoparticles on cell monolayers, which also includes methods for determining the parameters characterising nanoparticle-cell stickiness.
We evaluated the stickiness for 3 industrial nanoparticles (TiO - NM-105, CeO - NM-212 and BaSO - NM-220) administered to 3 cell lines (HepG2, A549 and Caco-2) and subsequently estimated corresponding delivered doses. Our results confirm that stickiness is a function of both nanoparticle and cell type, with the stickiest combination being BaSO and Caco-2 cells. The results also underline that accurate estimations of the delivered dose cannot prescind from a rigorous evaluation of the affinity between the cell type and nanoparticle under investigation.
Accurate nanoparticle dose estimation in vitro is crucial for in vivo extrapolation, allowing for their safe use in medical and other applications. This study provides a computational platform - DosiGUI - for more reliable dose-response characterization. It also highlights the importance of cell-nanoparticle stickiness for better risk assessment of engineered nanomaterials.
众所周知,纳米颗粒在流体中分散时会沉降、扩散和聚集。一旦它们接近细胞单层,根据细胞和纳米颗粒之间的亲和力或“粘性”,它们可能会立即吸附,以时间和浓度依赖的方式缓慢沉降,甚至会遇到空间位阻并反弹。因此,培养细胞中感知到的剂量不一定是最初给予的剂量。定量给药剂量的方法很难实施,因为它们需要对纳米颗粒和暴露情况进行精确的特征描述,以及处理控制系统动力学的方程的复杂数学运算。在这里,我们提出了一个管道和一个图形用户界面 DosiGUI,用于对细胞单层上工程纳米颗粒的准确纳米剂量学进行应用,其中还包括确定表征纳米颗粒-细胞粘性的参数的方法。
我们评估了 3 种工业纳米颗粒(TiO2-NM-105、CeO2-NM-212 和 BaSO4-NM-220)对 3 种细胞系(HepG2、A549 和 Caco-2)的粘性,随后估计了相应的给药剂量。我们的结果证实,粘性是纳米颗粒和细胞类型的共同作用,粘性最强的组合是 BaSO4 和 Caco-2 细胞。结果还强调,要准确估计给药剂量,就不能忽略细胞类型与所研究纳米颗粒之间的亲和力的严格评估。
在体外进行准确的纳米颗粒剂量估计对于体内外推至关重要,这有助于在医学和其他应用中安全使用它们。本研究提供了一个计算平台 - DosiGUI - 用于更可靠的剂量反应特征描述。它还强调了细胞-纳米颗粒粘性对于更好地评估工程纳米材料风险的重要性。