Suppr超能文献

基于等离子体超分子纳米酶的生物苍耳用于感染性糖尿病伤口的协同治疗

Plasmonic Supramolecular Nanozyme-Based Bio-Cockleburs for Synergistic Therapy of Infected Diabetic Wounds.

作者信息

Wang Xin, Qin Xudong, Liu Yi, Fang Yutong, Meng Hao, Shen Meili, Liu Linlin, Huan Weiwei, Tian Jian, Yang Ying-Wei

机构信息

College of Chemistry and China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130012, P. R. China.

Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China.

出版信息

Adv Mater. 2024 Dec;36(49):e2411194. doi: 10.1002/adma.202411194. Epub 2024 Oct 23.

Abstract

Diabetic wounds are a major devastating complication of diabetes due to hyperglycemia, bacterial invasion, and persistent inflammation, and the current antibiotic treatments can lead to the emergence of multidrug-resistant bacteria. Herein, a bimetallic nanozyme-based biomimetic bio-cocklebur (GNR@CeO@GNPs) is designed and synthesized for diabetic wound management by depositing spiky ceria (CeO) shells and gold nanoparticles (GNPs) on a gold nanorod (GNR) nanoantenna. The plasmonic-enhanced nanozyme catalysis and self-cascade reaction properties simultaneously boost the two-step enzyme-mimicking catalytic activity of GNR@CeO@GNPs, leading to a significant improvement in overall therapeutic efficacy rather than mere additive effects. Under the glucose activation and 808 nm laser irradiation, GNR@CeO@GNPs material captures photons and promotes the transfer of hot electrons from GNR and GNPs into CeO, realizing a "butterfly effect" of consuming local glucose, overcoming the limited antibacterial efficiency of an individual PTT modality, and providing substantial reactive oxygen species. In vitro and in vivo experiments demonstrate the material's exceptional antibacterial and antibiofilm properties against Gram-negative and Gram-positive bacteria, which can reduce inflammation, promote collagen deposition, and facilitate angiogenesis, thereby accelerating wound healing. This study provides a promising new strategy to develop plasmonic-enhanced nanozymes with a catalytic cascade mode for the antibiotic-free synergistic treatment of infected diabetic wounds.

摘要

糖尿病伤口是糖尿病的一种主要破坏性并发症,其成因包括高血糖、细菌入侵和持续炎症,而目前的抗生素治疗可能会导致多重耐药菌的出现。在此,通过在金纳米棒(GNR)纳米天线表面沉积尖刺状二氧化铈(CeO)壳层和金纳米颗粒(GNPs),设计并合成了一种基于双金属纳米酶的仿生生物苍耳(GNR@CeO@GNPs)用于糖尿病伤口处理。等离子体增强的纳米酶催化和自级联反应特性同时提升了GNR@CeO@GNPs的两步类酶催化活性,带来整体治疗效果的显著改善,而非单纯的加和效应。在葡萄糖激活和808纳米激光照射下,GNR@CeO@GNPs材料捕获光子并促进热电子从GNR和GNPs转移至CeO,实现消耗局部葡萄糖的“蝴蝶效应”,克服单一光热疗法有限的抗菌效率,并产生大量活性氧。体外和体内实验证明了该材料对革兰氏阴性菌和革兰氏阳性菌具有卓越的抗菌和抗生物膜特性,可减轻炎症、促进胶原蛋白沉积并促进血管生成,从而加速伤口愈合。本研究为开发具有催化级联模式的等离子体增强纳米酶用于感染性糖尿病伤口的无抗生素协同治疗提供了一种有前景的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验