Suppr超能文献

基于多参数术前磁共振成像的胶质母细胞瘤治疗生存推断

Treatment-wise Glioblastoma Survival Inference with Multi-parametric Preoperative MRI.

作者信息

Liu Xiaofeng, Shusharina Nadya, Shih Helen A, Kuo C-C Jay, El Fakhri Georges, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA.

Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3006897. Epub 2024 Apr 3.

Abstract

In this work, we aim to predict the survival time (ST) of glioblastoma (GBM) patients undergoing different treatments based on preoperative magnetic resonance (MR) scans. The personalized and precise treatment planning can be achieved by comparing the ST of different treatments. It is well established that both the current status of the patient (as represented by the MR scans) and the choice of treatment are the cause of ST. While previous related MR-based glioblastoma ST studies have focused only on the direct mapping of MR scans to ST, they have not included the underlying causal relationship between treatments and ST. To address this limitation, we propose a treatment-conditioned regression model for glioblastoma ST that incorporates treatment information in addition to MR scans. Our approach allows us to effectively utilize the data from all of the treatments in a unified manner, rather than having to train separate models for each of the treatments. Furthermore, treatment can be effectively injected into each convolutional layer through the adaptive instance normalization we employ. We evaluate our framework on the BraTS20 ST prediction task. Three treatment options are considered: Gross Total Resection (GTR), Subtotal Resection (STR), and no resection. The evaluation results demonstrate the effectiveness of injecting the treatment for estimating GBM survival.

摘要

在这项工作中,我们旨在基于术前磁共振(MR)扫描预测接受不同治疗的胶质母细胞瘤(GBM)患者的生存时间(ST)。通过比较不同治疗的生存时间,可以实现个性化且精确的治疗规划。众所周知,患者的当前状态(由MR扫描表示)和治疗选择都是生存时间的成因。虽然先前基于MR的胶质母细胞瘤生存时间研究仅专注于将MR扫描直接映射到生存时间,但它们并未考虑治疗与生存时间之间的潜在因果关系。为解决这一局限性,我们提出了一种用于胶质母细胞瘤生存时间的治疗条件回归模型,该模型除了MR扫描外还纳入了治疗信息。我们的方法使我们能够以统一的方式有效利用来自所有治疗的数据,而不必为每种治疗训练单独的模型。此外,通过我们采用的自适应实例归一化,可以将治疗有效地注入到每个卷积层中。我们在BraTS20生存时间预测任务上评估我们的框架。考虑了三种治疗方案:全切除(GTR)、次全切除(STR)和不切除。评估结果证明了注入治疗对估计GBM生存的有效性。

相似文献

1
Treatment-wise Glioblastoma Survival Inference with Multi-parametric Preoperative MRI.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3006897. Epub 2024 Apr 3.
3
Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance.
J Neurosurg. 2017 Jul;127(1):111-122. doi: 10.3171/2016.7.JNS16232. Epub 2016 Oct 7.
4
Impact of extent of resection for recurrent glioblastoma on overall survival: clinical article.
J Neurosurg. 2012 Dec;117(6):1032-8. doi: 10.3171/2012.9.JNS12504. Epub 2012 Oct 5.
5
Glioblastoma in the elderly: the effect of aggressive and modern therapies on survival.
J Neurosurg. 2016 Apr;124(4):998-1007. doi: 10.3171/2015.4.JNS142200. Epub 2015 Oct 9.
6
7
Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma.
Eur J Nucl Med Mol Imaging. 2019 Mar;46(3):603-613. doi: 10.1007/s00259-018-4180-3. Epub 2018 Oct 2.
8
Predicting survival in patients with glioblastoma using MRI radiomic features extracted from radiation planning volumes.
J Neurooncol. 2022 Feb;156(3):579-588. doi: 10.1007/s11060-021-03939-9. Epub 2022 Jan 3.
9
Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection.
Int J Radiat Oncol Biol Phys. 2013 Jul 15;86(4):616-22. doi: 10.1016/j.ijrobp.2013.02.014. Epub 2013 Mar 26.
10

引用本文的文献

1
DUAL PROMPTING FOR DIVERSE COUNT-LEVEL PET DENOISING.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980695. Epub 2025 May 12.
2
Dual Prompting for Diverse Count-level PET Denoising.
ArXiv. 2025 May 5:arXiv:2505.03037v1.

本文引用的文献

1
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI.
Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1.
2
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.
3
Memory consistent unsupervised off-the-shelf model adaptation for source-relaxed medical image segmentation.
Med Image Anal. 2023 Jan;83:102641. doi: 10.1016/j.media.2022.102641. Epub 2022 Oct 1.
4
SELF-SEMANTIC CONTOUR ADAPTATION FOR CROSS MODALITY BRAIN TUMOR SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761629. Epub 2022 Apr 26.
5
A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction.
Artif Intell Med. 2022 Apr;126:102260. doi: 10.1016/j.artmed.2022.102260. Epub 2022 Feb 24.
7
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
8
Overall Survival Prediction for Gliomas Using a Novel Compound Approach.
Front Oncol. 2021 Aug 18;11:724191. doi: 10.3389/fonc.2021.724191. eCollection 2021.
9
Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning.
Front Comput Neurosci. 2020 Aug 4;14:61. doi: 10.3389/fncom.2020.00061. eCollection 2020.
10
A Style-Based Generator Architecture for Generative Adversarial Networks.
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验