Suppr超能文献

基于多参数术前磁共振成像的胶质母细胞瘤治疗生存推断

Treatment-wise Glioblastoma Survival Inference with Multi-parametric Preoperative MRI.

作者信息

Liu Xiaofeng, Shusharina Nadya, Shih Helen A, Kuo C-C Jay, El Fakhri Georges, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 USA.

Dept. of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3006897. Epub 2024 Apr 3.

Abstract

In this work, we aim to predict the survival time (ST) of glioblastoma (GBM) patients undergoing different treatments based on preoperative magnetic resonance (MR) scans. The personalized and precise treatment planning can be achieved by comparing the ST of different treatments. It is well established that both the current status of the patient (as represented by the MR scans) and the choice of treatment are the cause of ST. While previous related MR-based glioblastoma ST studies have focused only on the direct mapping of MR scans to ST, they have not included the underlying causal relationship between treatments and ST. To address this limitation, we propose a treatment-conditioned regression model for glioblastoma ST that incorporates treatment information in addition to MR scans. Our approach allows us to effectively utilize the data from all of the treatments in a unified manner, rather than having to train separate models for each of the treatments. Furthermore, treatment can be effectively injected into each convolutional layer through the adaptive instance normalization we employ. We evaluate our framework on the BraTS20 ST prediction task. Three treatment options are considered: Gross Total Resection (GTR), Subtotal Resection (STR), and no resection. The evaluation results demonstrate the effectiveness of injecting the treatment for estimating GBM survival.

摘要

在这项工作中,我们旨在基于术前磁共振(MR)扫描预测接受不同治疗的胶质母细胞瘤(GBM)患者的生存时间(ST)。通过比较不同治疗的生存时间,可以实现个性化且精确的治疗规划。众所周知,患者的当前状态(由MR扫描表示)和治疗选择都是生存时间的成因。虽然先前基于MR的胶质母细胞瘤生存时间研究仅专注于将MR扫描直接映射到生存时间,但它们并未考虑治疗与生存时间之间的潜在因果关系。为解决这一局限性,我们提出了一种用于胶质母细胞瘤生存时间的治疗条件回归模型,该模型除了MR扫描外还纳入了治疗信息。我们的方法使我们能够以统一的方式有效利用来自所有治疗的数据,而不必为每种治疗训练单独的模型。此外,通过我们采用的自适应实例归一化,可以将治疗有效地注入到每个卷积层中。我们在BraTS20生存时间预测任务上评估我们的框架。考虑了三种治疗方案:全切除(GTR)、次全切除(STR)和不切除。评估结果证明了注入治疗对估计GBM生存的有效性。

相似文献

引用本文的文献

1
DUAL PROMPTING FOR DIVERSE COUNT-LEVEL PET DENOISING.用于多样计数水平PET去噪的双重提示
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980695. Epub 2025 May 12.

本文引用的文献

1
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI.用于脑肿瘤磁共振成像中异构结构分割的增量学习
Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1.
2
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.
4
SELF-SEMANTIC CONTOUR ADAPTATION FOR CROSS MODALITY BRAIN TUMOR SEGMENTATION.用于跨模态脑肿瘤分割的自语义轮廓自适应
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761629. Epub 2022 Apr 26.
7
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
10
A Style-Based Generator Architecture for Generative Adversarial Networks.基于风格的生成对抗网络生成器架构。
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228. doi: 10.1109/TPAMI.2020.2970919. Epub 2021 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验