Suppr超能文献

ACT:基于不对称协同训练的半监督域自适应医学图像分割

ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.

作者信息

Liu Xiaofeng, Xing Fangxu, Shusharina Nadya, Lim Ruth, Kuo C-C Jay, El Fakhri Georges, Woo Jonghye

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114.

Division of Radiation Biophysics, Department of radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.

Abstract

Unsupervised domain adaptation (UDA) has been vastly explored to alleviate domain shifts between source and target domains, by applying a well-performed model in an unlabeled target domain via supervision of a labeled source domain. Recent literature, however, has indicated that the performance is still far from satisfactory in the presence of significant domain shifts. Nonetheless, delineating a few target samples is usually manageable and particularly worthwhile, due to the substantial performance gain. Inspired by this, we aim to develop semi-supervised domain adaptation (SSDA) for medical image segmentation, which is largely underexplored. We, thus, propose to exploit both labeled source and target domain data, in addition to unlabeled target data in a unified manner. Specifically, we present a novel asymmetric co-training (ACT) framework to integrate these subsets and avoid the domination of the source domain data. Following a divide-and-conquer strategy, we explicitly decouple the label supervisions in SSDA into two asymmetric sub-tasks, including semi-supervised learning (SSL) and UDA, and leverage different knowledge from two segmentors to take into account the distinction between the source and target label supervisions. The knowledge learned in the two modules is then adaptively integrated with ACT, by iteratively teaching each other, based on the confidence-aware pseudo-label. In addition, pseudo label noise is well-controlled with an exponential MixUp decay scheme for smooth propagation. Experiments on cross-modality brain tumor MRI segmentation tasks using the BraTS18 database showed, even with limited labeled target samples, ACT yielded marked improvements over UDA and state-of-the-art SSDA methods and approached an "upper bound" of supervised joint training.

摘要

无监督域适应(UDA)已被广泛研究,旨在通过在有标签的源域监督下,将一个性能良好的模型应用于无标签的目标域,来缓解源域和目标域之间的域偏移。然而,最近的文献表明,在存在显著域偏移的情况下,其性能仍远不能令人满意。尽管如此,由于能带来显著的性能提升,标记少量目标样本通常是可行的,而且特别值得。受此启发,我们旨在开发用于医学图像分割的半监督域适应(SSDA),而这在很大程度上尚未得到充分探索。因此,我们建议以统一的方式利用有标签的源域和目标域数据,以及无标签的目标数据。具体而言,我们提出了一种新颖的不对称协同训练(ACT)框架,以整合这些子集,并避免源域数据占据主导地位。遵循分而治之的策略,我们将SSDA中的标签监督明确解耦为两个不对称子任务,包括半监督学习(SSL)和UDA,并利用来自两个分割器的不同知识,以考虑源域和目标域标签监督之间的差异。然后,基于置信度感知伪标签,通过相互迭代教学,将在两个模块中学到的知识与ACT进行自适应整合。此外,通过指数MixUp衰减方案对伪标签噪声进行了很好的控制,以实现平滑传播。使用BraTS18数据库进行的跨模态脑肿瘤MRI分割任务实验表明,即使标记的目标样本有限,ACT相对于UDA和当前最先进的SSDA方法也有显著改进,并接近监督联合训练的“上限”。

相似文献

1
ACT: Semi-supervised Domain-adaptive Medical Image Segmentation with Asymmetric Co-Training.ACT:基于不对称协同训练的半监督域自适应医学图像分割
Med Image Comput Comput Assist Interv. 2022 Sep;13435:66-76. doi: 10.1007/978-3-031-16443-9_7. Epub 2022 Sep 16.
2
Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation.将现成的源分割器应用于目标医学图像分割
Med Image Comput Comput Assist Interv. 2021;12902:549-559. doi: 10.1007/978-3-030-87196-3_51. Epub 2021 Sep 21.
9
Unsupervised Domain Adaptation for Segmentation with Black-box Source Model.基于黑箱源模型的无监督域自适应分割
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12032. doi: 10.1117/12.2607895. Epub 2022 Apr 4.

引用本文的文献

6
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI.用于脑肿瘤磁共振成像中异构结构分割的增量学习
Med Image Comput Comput Assist Interv. 2023 Oct;14221:46-56. doi: 10.1007/978-3-031-43895-0_5. Epub 2023 Oct 1.

本文引用的文献

1
SELF-SEMANTIC CONTOUR ADAPTATION FOR CROSS MODALITY BRAIN TUMOR SEGMENTATION.用于跨模态脑肿瘤分割的自语义轮廓自适应
Proc IEEE Int Symp Biomed Imaging. 2022 Mar;2022. doi: 10.1109/isbi52829.2022.9761629. Epub 2022 Apr 26.
2
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation.用于脑肿瘤分割的无监督黑箱模型域适应
Front Neurosci. 2022 Jun 2;16:837646. doi: 10.3389/fnins.2022.837646. eCollection 2022.
3
Generative Self-training for Cross-domain Unsupervised Tagged-to-Cine MRI Synthesis.用于跨域无监督标记到电影MRI合成的生成式自训练
Med Image Comput Comput Assist Interv. 2021;12903:138-148. doi: 10.1007/978-3-030-87199-4_13. Epub 2021 Sep 21.
7
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验