Iyer Krithika, Elhabian Shireen Y
Scientific Computing and Imaging Institute, University of Utah, UT, USA.
Kahlert School of Computing, University of Utah, UT, USA.
Mach Learn Med Imaging. 2025;15242:117-127. doi: 10.1007/978-3-031-73290-4_12. Epub 2024 Oct 23.
The study of physiology demonstrates that the form (shape) of anatomical structures dictates their functions, and analyzing the form of anatomies plays a crucial role in clinical research. Statistical shape modeling (SSM) is a widely used tool for quantitative analysis of forms of anatomies, aiding in characterizing and identifying differences within a population of subjects. Despite its utility, the conventional SSM construction pipeline is often complex and time-consuming. Additionally, reliance on linearity assumptions further limits the model from capturing clinically relevant variations. Recent advancements in deep learning solutions enable the direct inference of SSM from unsegmented medical images, streamlining the process and improving accessibility. However, the new methods of SSM from images do not adequately account for situations where the imaging data quality is poor or where only sparse information is available. Moreover, quantifying aleatoric uncertainty, which represents inherent data variability, is crucial in deploying deep learning for clinical tasks to ensure reliable model predictions and robust decision-making, especially in challenging imaging conditions. Therefore, we propose SPI-CorrNet, a unified model that predicts 3D correspondences from sparse imaging data. It leverages a teacher network to regularize feature learning and quantifies data-dependent aleatoric uncertainty by adapting the network to predict intrinsic input variances. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that our technique enhances the accuracy and robustness of sparse image-driven SSM.
生理学研究表明,解剖结构的形态决定其功能,而分析解剖结构的形态在临床研究中起着至关重要的作用。统计形状建模(SSM)是一种广泛用于解剖结构形态定量分析的工具,有助于表征和识别受试者群体中的差异。尽管其具有实用性,但传统的SSM构建流程通常复杂且耗时。此外,对线性假设的依赖进一步限制了模型捕捉临床相关变异的能力。深度学习解决方案的最新进展使得能够从未分割的医学图像中直接推断SSM,简化了流程并提高了可及性。然而,基于图像的SSM新方法并未充分考虑成像数据质量较差或仅有稀疏信息的情况。此外,量化代表固有数据变异性的偶然不确定性对于将深度学习应用于临床任务以确保可靠的模型预测和稳健的决策至关重要,尤其是在具有挑战性的成像条件下。因此,我们提出了SPI-CorrNet,这是一种从稀疏成像数据预测三维对应关系的统一模型。它利用一个教师网络来规范特征学习,并通过使网络适应预测内在输入方差来量化数据相关的偶然不确定性。在LGE MRI左心房数据集和腹部CT-1K肝脏数据集上的实验表明,我们的技术提高了稀疏图像驱动的SSM的准确性和鲁棒性。