Suppr超能文献

MASSM:一个直接从图像进行多解剖统计形状建模的端到端深度学习框架。

MASSM: An End-to-End Deep Learning Framework for Multi-Anatomy Statistical Shape Modeling Directly From Images.

作者信息

Ukey Janmesh, Kataria Tushar, Elhabian Shireen Y

机构信息

Kahlert School of Computing, University of Utah.

Scientific Computing and Imaging Institute, University of Utah.

出版信息

Shape Med Imaging (2024). 2025;15275:149-163. doi: 10.1007/978-3-031-75291-9_12. Epub 2024 Oct 26.

Abstract

Statistical Shape Modeling (SSM) effectively analyzes anatomical variations within populations but is limited by the need for manual localization and segmentation, which relies on scarce medical expertise. Recent advances in deep learning have provided a promising approach that automatically generates statistical representations (as point distribution models or PDMs) from unsegmented images. Once trained, these deep learning-based models eliminate the need for manual segmentation for new subjects. Most deep learning methods still require manual prealignment of image volumes and bounding box specification around the target anatomy, leading to a partially manual inference process. Recent approaches facilitate anatomy localization but only estimate population-level statistical representations and cannot directly delineate anatomy in images. Additionally, they are limited to modeling a single anatomy. We introduce MASSM, a novel end-to-end deep learning framework that simultaneously localizes multiple anatomies, estimates population-level statistical representations, and delineates shape representations directly in image space. Our results show that MASSM, which delineates anatomy in image space and handles multiple anatomies through a multitask network, provides superior shape information compared to segmentation networks for medical imaging tasks. Estimating Statistical Shape Models (SSM) is a stronger task than segmentation, as it encodes a more robust statistical prior for the objects to be detected and delineated. MASSM allows for more accurate and comprehensive shape representations, surpassing the capabilities of traditional pixel-wise segmentation.

摘要

统计形状建模(SSM)能有效分析群体内的解剖变异,但受限于需要手动定位和分割,这依赖于稀缺的医学专业知识。深度学习的最新进展提供了一种有前景的方法,可从未分割的图像中自动生成统计表示(作为点分布模型或PDM)。一旦训练完成,这些基于深度学习的模型就无需对新对象进行手动分割。大多数深度学习方法仍需要对图像体积进行手动预对齐,并围绕目标解剖结构指定边界框,导致推理过程部分依赖手动操作。最近的方法有助于解剖定位,但仅估计群体水平的统计表示,无法直接在图像中描绘解剖结构。此外,它们仅限于对单一解剖结构进行建模。我们引入了MASSM,这是一种新颖的端到端深度学习框架,它能同时定位多个解剖结构,估计群体水平的统计表示,并直接在图像空间中描绘形状表示。我们的结果表明,MASSM在图像空间中描绘解剖结构并通过多任务网络处理多个解剖结构,与用于医学成像任务的分割网络相比,能提供更优的形状信息。估计统计形状模型(SSM)比分割任务更具挑战性,因为它为待检测和描绘的对象编码了更强大的统计先验。MASSM能实现更准确和全面的形状表示,超越了传统逐像素分割的能力。

相似文献

3
Uncertain-DeepSSM: From Images to Probabilistic Shape Models.不确定深度状态空间模型:从图像到概率形状模型。
Shape Med Imaging (2020). 2020 Oct;12474:57-72. doi: 10.1007/978-3-030-61056-2_5. Epub 2020 Oct 3.
4
Can point cloud networks learn statistical shape models of anatomies?点云网络能否学习解剖结构的统计形状模型?
Med Image Comput Comput Assist Interv. 2023 Oct;14220:486-496. doi: 10.1007/978-3-031-43907-0_47. Epub 2023 Oct 1.
6
Progressive DeepSSM: Training Methodology for Image-To-Shape Deep Models.渐进式深度SSM:图像到形状深度模型的训练方法
Shape Med Imaging (2023). 2023 Oct;14350:157-172. doi: 10.1007/978-3-031-46914-5_13. Epub 2023 Oct 31.
7
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images.ADASSM:基于图像的统计形状模型中的对抗性数据增强
Shape Med Imaging (2023). 2023 Oct;14350:90-104. doi: 10.1007/978-3-031-46914-5_8. Epub 2023 Oct 31.
10
Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy.Mesh2SSM:从表面网格到解剖学统计形状模型
Med Image Comput Comput Assist Interv. 2023 Oct;14220:615-625. doi: 10.1007/978-3-031-43907-0_59. Epub 2023 Oct 1.

本文引用的文献

3
ADASSM: Adversarial Data Augmentation in Statistical Shape Models From Images.ADASSM:基于图像的统计形状模型中的对抗性数据增强
Shape Med Imaging (2023). 2023 Oct;14350:90-104. doi: 10.1007/978-3-031-46914-5_8. Epub 2023 Oct 31.
6
10
From Images to Probabilistic Anatomical Shapes: A Deep Variational Bottleneck Approach.从图像到概率解剖形状:一种深度变分瓶颈方法。
Med Image Comput Comput Assist Interv. 2022 Sep;13432:474-484. doi: 10.1007/978-3-031-16434-7_46. Epub 2022 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验