Ukey Janmesh, Kataria Tushar, Elhabian Shireen Y
Kahlert School of Computing, University of Utah.
Scientific Computing and Imaging Institute, University of Utah.
Shape Med Imaging (2024). 2025;15275:149-163. doi: 10.1007/978-3-031-75291-9_12. Epub 2024 Oct 26.
Statistical Shape Modeling (SSM) effectively analyzes anatomical variations within populations but is limited by the need for manual localization and segmentation, which relies on scarce medical expertise. Recent advances in deep learning have provided a promising approach that automatically generates statistical representations (as point distribution models or PDMs) from unsegmented images. Once trained, these deep learning-based models eliminate the need for manual segmentation for new subjects. Most deep learning methods still require manual prealignment of image volumes and bounding box specification around the target anatomy, leading to a partially manual inference process. Recent approaches facilitate anatomy localization but only estimate population-level statistical representations and cannot directly delineate anatomy in images. Additionally, they are limited to modeling a single anatomy. We introduce MASSM, a novel end-to-end deep learning framework that simultaneously localizes multiple anatomies, estimates population-level statistical representations, and delineates shape representations directly in image space. Our results show that MASSM, which delineates anatomy in image space and handles multiple anatomies through a multitask network, provides superior shape information compared to segmentation networks for medical imaging tasks. Estimating Statistical Shape Models (SSM) is a stronger task than segmentation, as it encodes a more robust statistical prior for the objects to be detected and delineated. MASSM allows for more accurate and comprehensive shape representations, surpassing the capabilities of traditional pixel-wise segmentation.
统计形状建模(SSM)能有效分析群体内的解剖变异,但受限于需要手动定位和分割,这依赖于稀缺的医学专业知识。深度学习的最新进展提供了一种有前景的方法,可从未分割的图像中自动生成统计表示(作为点分布模型或PDM)。一旦训练完成,这些基于深度学习的模型就无需对新对象进行手动分割。大多数深度学习方法仍需要对图像体积进行手动预对齐,并围绕目标解剖结构指定边界框,导致推理过程部分依赖手动操作。最近的方法有助于解剖定位,但仅估计群体水平的统计表示,无法直接在图像中描绘解剖结构。此外,它们仅限于对单一解剖结构进行建模。我们引入了MASSM,这是一种新颖的端到端深度学习框架,它能同时定位多个解剖结构,估计群体水平的统计表示,并直接在图像空间中描绘形状表示。我们的结果表明,MASSM在图像空间中描绘解剖结构并通过多任务网络处理多个解剖结构,与用于医学成像任务的分割网络相比,能提供更优的形状信息。估计统计形状模型(SSM)比分割任务更具挑战性,因为它为待检测和描绘的对象编码了更强大的统计先验。MASSM能实现更准确和全面的形状表示,超越了传统逐像素分割的能力。