Suppr超能文献

利用吸气和呼气胸部计算机断层扫描及临床信息,通过深度学习检测慢性阻塞性肺疾病。

Detection of chronic obstructive pulmonary disease with deep learning using inspiratory and expiratory chest computed tomography and clinical information.

作者信息

Zhang Zhuoneng, Wu Fan, Zhou Yumin, Yu Donglin, Sun Chuanqi, Xiong Xiangyu, Situ Zhiquan, Liu Zeping, Gu Anyan, Huang Xin, Zheng Youlan, Deng Zhishan, Zhao Ningning, Rong Zhaowei, He Ji, Xie Guoxi, Ran Pixin

机构信息

School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China.

Guangzhou Institute of Respiratory Health & State Key Laboratory of Respiratory Disease & National Center for Respiratory Medicine & National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

出版信息

J Thorac Dis. 2024 Sep 30;16(9):6101-6111. doi: 10.21037/jtd-24-367. Epub 2024 Sep 26.

Abstract

BACKGROUND

In recent years, more and more patients with chronic obstructive pulmonary disease (COPD) have remained undiagnosed despite having undergone medical examination. This study aimed to develop a convolutional neural network (CNN) model for automatically detecting COPD using double-phase (inspiratory and expiratory) chest computed tomography (CT) images and clinical information.

METHODS

A total of 2,047 participants, including never-smokers, ex-smokers, and current smokers, were prospectively recruited from three hospitals. The double-phase CT images and clinical information of each participant were collected for training the proposed CNN model which integrated a sequence of residual feature extracting blocks network (RFEBNet) for extracting CT image features and a fully connected feed-forward network (FCNet) for extracting clinical features. In addition, the RFEBNet utilizing double- or single-phase CT images and the FCNet using clinical information were conducted for comparison.

RESULTS

The proposed CNN model, which utilized double-phase CT images and clinical information, outperformed other models in detecting COPD with an area under the receiver operating characteristic curve (AUC) of 0.930 [95% confidence interval (CI): 0.913-0.951] on an internal test set (n=307). The AUC was higher than the RFEBNet using double-phase CT images (AUC =0.912, 95% CI: 0.891-0.932), single inspiratory CT images (AUC =0.888, 95% CI: 0.863-0.915), single expiratory CT images (AUC =0.897, 95% CI: 0.874-0.925), and FCNet using clinical information (AUC =0.805, 95% CI: 0.777-0.841). The proposed model also achieved the best performance on an external test (n=516) with an AUC of 0.896 (95% CI: 0.871-0.931).

CONCLUSIONS

The proposed CNN model using double-phase CT images and clinical information can automatically detect COPD with high accuracy.

摘要

背景

近年来,越来越多的慢性阻塞性肺疾病(COPD)患者尽管接受了医学检查,但仍未被诊断出来。本研究旨在开发一种卷积神经网络(CNN)模型,用于使用双期(吸气和呼气)胸部计算机断层扫描(CT)图像和临床信息自动检测COPD。

方法

从三家医院前瞻性招募了总共2047名参与者,包括从不吸烟者、既往吸烟者和当前吸烟者。收集每个参与者的双期CT图像和临床信息,用于训练所提出的CNN模型,该模型集成了一系列用于提取CT图像特征的残差特征提取块网络(RFEBNet)和用于提取临床特征的全连接前馈网络(FCNet)。此外,还对使用双期或单期CT图像的RFEBNet和使用临床信息的FCNet进行了比较。

结果

所提出的利用双期CT图像和临床信息的CNN模型在内部测试集(n = 307)上检测COPD的表现优于其他模型,受试者操作特征曲线下面积(AUC)为0.930 [95%置信区间(CI):0.913 - 0.951]。该AUC高于使用双期CT图像(AUC = 0.912,95% CI:0.891 - 0.932)、单吸气CT图像(AUC = 0.888,95% CI:0.863 - 0.915)、单呼气CT图像(AUC = 0.897,95% CI:0.874 - 0.925)的RFEBNet以及使用临床信息的FCNet(AUC = 0.805,95% CI:0.777 - 0.841)。所提出的模型在外部测试(n = 516)中也取得了最佳性能,AUC为0.896(95% CI:0.871 - 0.931)。

结论

所提出的使用双期CT图像和临床信息的CNN模型能够高精度地自动检测COPD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ed6/11494531/0923c22c155a/jtd-16-09-6101-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验