Suppr超能文献

基于对比对抗域泛化的主题感知PET去噪

Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization.

作者信息

Liu X, Marin T, Vafay Eslahi S, Tiss A, Chemli Y, Johson K A, El Fakhri G, Ouyang J

机构信息

Yale University, Radiology and Biomedical Imaging, New Haven, Connecticut, United States of America.

Massachusetts General Hospital and Harvard Medical School, Radiology, Boston, Massachusetts, United States of America.

出版信息

IEEE Nucl Sci Symp Conf Rec (1997). 2024 Oct-Nov;2024. doi: 10.1109/nss/mic/rtsd57108.2024.10656150. Epub 2024 Sep 25.

Abstract

Recent advances in deep learning (DL) have greatly improved the performance of positron emission tomography (PET) denoising performance. However, DL model performance can vary a lot across subjects, due to the large variability of the count levels and spatial distributions. A generalizable DL model that mitigates the subject-wise variations is highly expected toward a reliable and trustworthy system for clinical application. In this work, we propose a contrastive adversarial learning framework for subject-wise domain generalization (DG). Specifically, we configure a contrastive discriminator in addition to the UNet-based denoising module to check the subject-related information in the bottleneck feature, while the denoising module is adversarially trained to enforce the extraction of subject-invariant features. The sampled low-count realizations from the list-mode data are used as anchor-positive pairs to be close to each other, while the other subjects are used as negative samples to be distributed far away. We evaluated on 97 F-MK6240 tau PET studies, each having 20 noise realizations with 25% fractions of events. Training, validation, and testing were implemented using 1400, 120, and 420 pairs of 3D image volumes in a subject-independent manner. The proposed contrastive adversarial DG demonstrated superior denoising performance than conventional UNet without subject-wise DG and cross-entropy-based adversarial DG.

摘要

深度学习(DL)的最新进展极大地提高了正电子发射断层扫描(PET)的去噪性能。然而,由于计数水平和空间分布的巨大变异性,DL模型的性能在不同受试者之间可能会有很大差异。人们迫切期望有一个可推广的DL模型来减轻个体差异,以建立一个可靠且值得信赖的临床应用系统。在这项工作中,我们提出了一种用于个体域泛化(DG)的对比对抗学习框架。具体来说,除了基于UNet的去噪模块外,我们还配置了一个对比鉴别器,以检查瓶颈特征中与受试者相关的信息,而去噪模块则通过对抗训练来强制提取受试者不变特征。从列表模式数据中采样的低计数实现用作锚定-正样本对,使其彼此靠近,而其他受试者用作负样本,使其分布远离。我们在97项F-MK6240 tau PET研究中进行了评估,每项研究有20种噪声实现,事件比例为25%。训练、验证和测试以独立于受试者的方式使用1400、120和420对3D图像体积来实现。所提出的对比对抗DG显示出比没有个体DG的传统UNet和基于交叉熵的对抗DG更好的去噪性能。

相似文献

1
Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization.基于对比对抗域泛化的主题感知PET去噪
IEEE Nucl Sci Symp Conf Rec (1997). 2024 Oct-Nov;2024. doi: 10.1109/nss/mic/rtsd57108.2024.10656150. Epub 2024 Sep 25.
5
Unsupervised low-dose CT denoising using bidirectional contrastive network.基于双向对比网络的无监督低剂量 CT 去噪。
Comput Methods Programs Biomed. 2024 Jun;251:108206. doi: 10.1016/j.cmpb.2024.108206. Epub 2024 May 3.
9
Adversarial Consistency for Single Domain Generalization in Medical Image Segmentation.医学图像分割中单域泛化的对抗一致性
Med Image Comput Comput Assist Interv. 2022 Sep;13437:671-681. doi: 10.1007/978-3-031-16449-1_64. Epub 2022 Sep 17.
10
Adversarial Spatiotemporal Contrastive Learning for Electrocardiogram Signals.对抗时空对比学习在心电图信号中的应用。
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):13845-13859. doi: 10.1109/TNNLS.2023.3272153. Epub 2024 Oct 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验