Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
ACS Sens. 2024 Nov 22;9(11):5770-5775. doi: 10.1021/acssensors.4c01895. Epub 2024 Oct 24.
The rapid fluctuations of metal ion levels in biological systems are faster than the time needed to map fluorinated sensors designed for the F-MRI of cations. An attractive modular solution might come from the activity-based sensing approach. Here, we propose a highly reactive but still ultimately specific synthetic fluorinated sensor for F-MRI mapping of labile Zn. The sensor comprises a dipicolylamine scaffold for Zn recognition conjugated to a fluorophenyl acetate entity. Upon binding to Zn, the synthetic sensor is readily hydrolyzed, and the frequency of its F-functional group in F-NMR is shifted by 12 ppm, allowing the display of the Zn distribution as an artificial MRI-colored map highlighting its specificity compared to other metal ions. The irreversible Zn-induced hydrolysis results in a "turn-on" F-MRI, potentially detecting the cation even upon a transient elevation of its levels. We envision that additional metal-ion sensors can be developed based on the principles demonstrated in this work, expanding the molecular toolbox currently used for F-MRI.
生物系统中金属离子水平的快速波动比用于阳离子 F-MRI 的氟化传感器的设计所需的时间更快。一种有吸引力的模块化解决方案可能来自基于活性的传感方法。在这里,我们提出了一种高反应性但仍然最终具有特异性的合成氟化传感器,用于 F-MRI 映射不稳定的 Zn。该传感器包含用于 Zn 识别的二吡啶酰胺支架,与氟苯基乙酸酯实体共轭。与 Zn 结合后,合成传感器很容易水解,其 F-官能团在 F-NMR 中的频率偏移 12 ppm,允许以人工 MRI 彩色地图显示 Zn 分布,突出其与其他金属离子的特异性。不可逆的 Zn 诱导水解导致“开启”F-MRI,即使在其水平短暂升高时也可能检测到阳离子。我们设想可以根据这项工作中展示的原理开发其他金属离子传感器,从而扩展当前用于 F-MRI 的分子工具包。