Institute of Anatomy, University of Bern , Bern, Switzerland.
Graduate School for Cellular and Biomedical Sciences, University of Bern , Bern, Switzerland.
J Cell Biol. 2025 Jan 6;224(1). doi: 10.1083/jcb.202402169. Epub 2024 Oct 24.
Cryo-electron tomography (cryo-ET) has the potential to reveal cell structure down to atomic resolution. Nevertheless, cellular cryo-ET data is highly complex, requiring image segmentation for visualization and quantification of subcellular structures. Due to noise and anisotropic resolution in cryo-ET data, automatic segmentation based on classical computer vision approaches usually does not perform satisfactorily. Communication between neurons relies on neurotransmitter-filled synaptic vesicle (SV) exocytosis. Cryo-ET study of the spatial organization of SVs and their interconnections allows a better understanding of the mechanisms of exocytosis regulation. Accurate SV segmentation is a prerequisite to obtaining a faithful connectivity representation. Hundreds of SVs are present in a synapse, and their manual segmentation is a bottleneck. We addressed this by designing a workflow consisting of a convolutional network followed by post-processing steps. Alongside, we provide an interactive tool for accurately segmenting spherical vesicles. Our pipeline can in principle segment spherical vesicles in any cell type as well as extracellular and in vitro spherical vesicles.
冷冻电子断层扫描(cryo-ET)有可能揭示原子分辨率级别的细胞结构。然而,细胞冷冻电子断层扫描数据非常复杂,需要进行图像分割,以便可视化和量化亚细胞结构。由于冷冻电子断层扫描数据中的噪声和各向异性分辨率,基于经典计算机视觉方法的自动分割通常不能令人满意。神经元之间的通讯依赖于充满神经递质的突触小泡(SV)胞吐作用。对 SV 的空间组织及其相互连接的冷冻电子断层扫描研究有助于更好地理解胞吐作用调节的机制。准确的 SV 分割是获得忠实连接表示的前提。一个突触中存在数百个 SV,对其进行手动分割是一个瓶颈。我们通过设计一个由卷积网络和后处理步骤组成的工作流程来解决这个问题。同时,我们提供了一个用于准确分割球形囊泡的交互式工具。我们的流水线原则上可以分割任何细胞类型以及细胞外和体外的球形囊泡。