Suppr超能文献

TiCT-超高分子量聚乙烯纳米复合材料——迈向提高生物医学植入物的耐磨性

TiCT -UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants.

作者信息

Rothammer Benedict, Feile Klara, Werner Siegfried, Frank Rainer, Bartz Marcel, Wartzack Sandro, Schubert Dirk W, Drummer Dietmar, Detsch Rainer, Wang Bo, Rosenkranz Andreas, Marian Max

机构信息

Engineering Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Institute of Polymer Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

出版信息

J Biomed Mater Res A. 2025 Jan;113(1):e37819. doi: 10.1002/jbm.a.37819. Epub 2024 Oct 24.

Abstract

There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating TiCT -UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, TiCT -reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.

摘要

迫切需要提高用于生物医学设备(如承重人工关节)的聚合物材料的机械性能和生物摩擦学性能,特别是超高分子量聚乙烯(UHMWPE)。虽然二维(2D)材料,如石墨烯、氧化石墨烯(GO)、还原氧化石墨烯或六方氮化硼(h-BN)已显示出作为聚合物基复合材料(PMC)增强相的潜力,但以化学惰性、机械强度和耐磨性著称的MXenes在生物摩擦学方面的潜力在很大程度上仍未得到探索。本研究旨在通过模压成型制备TiCT -UHMWPE纳米复合材料来填补这一空白。主要目标包括提高机械性能、生物相容性和生物摩擦学性能,特别是在人工滑液润滑的钴铬合金销- UHMWPE盘实验中的摩擦和耐磨性能。由此,未观察到压痕硬度或弹性模量有实质性变化,同时对所得润湿性和表面张力的分析以及间接和直接的体外评估均未表明存在细胞毒性。最重要的是,TiCT 增强的PMC分别将摩擦和磨损大幅降低了19%和44%,这归因于形成了易于剪切的转移膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验