Suppr超能文献

熔融无机盐中的还原途径可实现Ⅲ-Ⅴ族半导体纳米晶体的胶体合成。

Reductive pathways in molten inorganic salts enable colloidal synthesis of III-V semiconductor nanocrystals.

作者信息

Ondry Justin C, Zhou Zirui, Lin Kailai, Gupta Aritrajit, Chang Jun Hyuk, Wu Haoqi, Jeong Ahhyun, Hammel Benjamin F, Wang Di, Fry H Christopher, Yazdi Sadegh, Dukovic Gordana, Schaller Richard D, Rabani Eran, Talapin Dmitri V

机构信息

Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA.

Department of Chemistry, University of California, Berkeley, CA 94720, USA.

出版信息

Science. 2024 Oct 25;386(6720):401-407. doi: 10.1126/science.ado7088. Epub 2024 Oct 24.

Abstract

Colloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III-group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials. We directly nucleated and grew colloidal quantum dots in molten inorganic salts by harnessing molten salt redox chemistry and using surfactant additives for nanocrystal shape control. Synthesis temperatures above 425°C are critical for realizing photoluminescent GaAs quantum dots, which emphasizes the importance of high temperatures enabled by molten salt solvents. We generalize the methodology and demonstrate nearly a dozen III-V solid-solution nanocrystal compositions that have not been previously reported.

摘要

胶体量子点具有尺寸可调的光电特性和可扩展的合成方法,适用于需要廉价高性能半导体的应用场景。合成科学的突破是实现量子点技术的关键,但包括胶体砷化镓(GaAs)在内的重要III-V族半导体,目前仍无法用现有方法合成。本文介绍的高温熔盐胶体合成法能够制备此前难以处理的胶体材料。我们利用熔盐氧化还原化学,通过添加表面活性剂来控制纳米晶体形状,在熔融无机盐中直接成核并生长胶体量子点。高于425°C的合成温度对于实现具有光致发光特性的GaAs量子点至关重要,这凸显了熔盐溶剂所实现的高温的重要性。我们对该方法进行了推广,并展示了近十种此前未报道过的III-V族固溶体纳米晶体组合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验