González Francisco, García-Abadillo Julián, Jarquín Diego
Agronomy Department, University of Florida, Gainesville, Florida, USA.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, Spain.
Plant Genome. 2025 Mar;18(1):e20519. doi: 10.1002/tpg2.20519. Epub 2024 Oct 24.
Climate change represents a significant challenge to global food security by altering environmental conditions critical to crop growth. Plant breeders can play a key role in mitigating these challenges by developing more resilient crop varieties; however, these efforts require significant investments in resources and time. In response, it is imperative to use current technologies that assimilate large biological and environmental datasets into predictive models to accelerate the research, development, and release of new improved varieties that can be more resilient to the increasingly variable climatic conditions. Leveraging large and diverse datasets can improve the characterization of phenotypic responses due to environmental stimuli and genomic pulses. A better characterization of these signals holds the potential to enhance our ability to predict trait performance under changes in weather and/or soil conditions with high precision. This paper introduces characterization and integration of driven omics (CHiDO), an easy-to-use, no-code platform designed to integrate diverse omics datasets and effectively model their interactions. With its flexibility to integrate and process datasets, CHiDO's intuitive interface allows users to explore historical data, formulate hypotheses, and optimize data collection strategies for future scenarios. The platform's mission emphasizes global accessibility, democratizing statistical solutions for situations where professional ability in data processing and data analysis is not available.
气候变化通过改变对作物生长至关重要的环境条件,对全球粮食安全构成重大挑战。植物育种者可以通过培育更具韧性的作物品种,在应对这些挑战方面发挥关键作用;然而,这些努力需要在资源和时间上投入大量资金。作为回应,必须利用当前技术,将大量生物和环境数据集整合到预测模型中,以加速能够更好适应日益多变气候条件的新改良品种的研究、开发和发布。利用大量多样的数据集可以改善对环境刺激和基因组脉冲引起的表型反应的表征。更好地表征这些信号有可能提高我们在天气和/或土壤条件变化下高精度预测性状表现的能力。本文介绍了驱动组学特征与整合(CHiDO),这是一个易于使用的无代码平台,旨在整合各种组学数据集并有效模拟它们之间的相互作用。凭借其整合和处理数据集的灵活性,CHiDO直观的界面允许用户探索历史数据、提出假设,并为未来场景优化数据收集策略。该平台的使命强调全球可及性,为那些缺乏数据处理和数据分析专业能力的情况提供普及化的统计解决方案。