Suppr超能文献

解读放射性药物疗法对前列腺癌肿瘤微环境的影响:基于空间转录组学的计算机模拟探索

Deciphering the effects of radiopharmaceutical therapy in the tumor microenvironment of prostate cancer: an in-silico exploration with spatial transcriptomics.

作者信息

Hong Jimin, Bae Sungwoo, Cavinato Lara, Seifert Robert, Ryhiner Marc, Rominger Axel, Erlandsson Kjell, Wilks Moses, Normandin Marc, El-Fakhri Georges, Choi Hongyoon, Shi Kuangyu

机构信息

Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland.

Gordon Center of Medical Imaging, Massachusetts General Hospital, Massachusetts, United States of America.

出版信息

Theranostics. 2024 Oct 28;14(18):7122-7139. doi: 10.7150/thno.99516. eCollection 2024.

Abstract

Radiopharmaceutical therapy (RPT) is an emerging prostate cancer treatment that delivers radiation to specific molecules within the tumor microenvironment (TME), causing DNA damage and cell death. Given TME heterogeneity, it's crucial to explore RPT dosimetry and biological impacts at the cellular level. We integrated spatial transcriptomics (ST) with computational modeling to investigate the effects of RPT targeting prostate-specific membrane antigen (PSMA), fibroblast activation protein (FAP), and gastrin-releasing peptide receptor (GRPR) each labelled with beta-emitting lutetium-177 (Lu) and alpha-emitting actinium-225 (Ac). Three ST datasets from primary tissue samples of two prostate cancer patients were obtained. From these datasets, we extracted gene expressions, including FOLH1, GRPR, FAP, and Harris Hypoxia, and estimated the proportions of different cell types-epithelial, endothelial, and prostate cancer (PC) cells-in the corresponding ST spots. We computed the spatiotemporal distribution of each RPT targeting PSMA, FAP, and GRPR at each ST spot by solving the partial differential equation (PDE) using a convection-reaction-diffusion (CRD) model, assuming similar pharmacokinetic parameters across all ligands. A well-established physiologically based pharmacokinetic (PBPK) model was used to simulate the input function in the prostate, carefully calibrated to deliver 10 Gy to the prostate tumor over 20 days. Dosimetry was estimated using the Medical Internal Radiation Dose (MIRD) formalism, applying the dose point kernels (DVK) method. The survival probability was estimated using the linear quadratic model, applied to both beta-emitting RPT labeled with Lu and Ac. A modified linear quadratic model was used to estimate the bioeffect of the alpha-emitting RPT. The results demonstrate distinct dose-response and efficacy patterns across ST samples, with FAP-targeted RPT exhibiting limited effectiveness in tumor cell-rich areas compared to PSMA- and GRPR-targeted therapies. GRPR-targeted RPT showed higher resistance in hypoxic regions relative to the other therapies. Additionally, Ac-labeled RPT was more effective overall than Lu-labeled RPT, especially in areas with low cancer-cell fraction or high hypoxia. The findings suggest that a combination of Ac-labeled FAP- and PSMA-targeted RPT offers the best therapeutic strategy. The proposed method, which combines ST and computational modeling to determine the dosimetry and cell survival probability of RPT in the TME, holds promise for identifying optimal personalized RPT strategies.

摘要

放射性药物治疗(RPT)是一种新兴的前列腺癌治疗方法,它能将辐射传递到肿瘤微环境(TME)中的特定分子,导致DNA损伤和细胞死亡。鉴于TME的异质性,在细胞水平上探索RPT剂量学和生物学影响至关重要。我们将空间转录组学(ST)与计算模型相结合,以研究RPT靶向分别用发射β射线的镥-177(Lu)和发射α射线的锕-225(Ac)标记的前列腺特异性膜抗原(PSMA)、成纤维细胞活化蛋白(FAP)和胃泌素释放肽受体(GRPR)的效果。获得了两名前列腺癌患者原发组织样本的三个ST数据集。从这些数据集中,我们提取了包括FOLH1、GRPR、FAP和Harris缺氧相关的基因表达,并估计了相应ST位点中不同细胞类型(上皮细胞、内皮细胞和前列腺癌细胞)的比例。我们通过使用对流反应扩散(CRD)模型求解偏微分方程(PDE),计算了每个ST位点上每种靶向PSMA、FAP和GRPR的RPT的时空分布,假设所有配体的药代动力学参数相似。使用一个成熟的基于生理的药代动力学(PBPK)模型来模拟前列腺中的输入函数,并经过仔细校准,以便在20天内给前列腺肿瘤提供10 Gy的剂量。使用医学内照射剂量(MIRD)形式主义,应用剂量点核(DVK)方法估计剂量学。使用线性二次模型估计存活概率,该模型适用于用Lu和Ac标记的发射β射线的RPT。使用改进的线性二次模型估计发射α射线的RPT的生物效应。结果表明,不同ST样本的剂量反应和疗效模式各不相同,与靶向PSMA和GRPR的疗法相比,靶向FAP的RPT在富含肿瘤细胞的区域显示出有限的有效性。与其他疗法相比,靶向GRPR的RPT在缺氧区域表现出更高的抗性。此外,Ac标记的RPT总体上比Lu标记的RPT更有效,尤其是在癌细胞比例低或缺氧程度高的区域。研究结果表明,Ac标记靶向FAP和PSMA的RPT联合使用提供了最佳治疗策略。所提出的将ST与计算模型相结合以确定TME中RPT的剂量学和细胞存活概率的方法,有望用于确定最佳的个性化RPT策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73a8/11610134/8b1c78327f13/thnov14p7122g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验