Manzanares Lorena, Spurling Dahnan, Szalai Alan M, Schröder Tim, Büber Ece, Ferrari Giovanni, Dagleish Martin R J, Nicolosi Valeria, Tinnefeld Philip
Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, F-59000, France.
Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81377, Munich, Germany.
Adv Mater. 2024 Dec;36(49):e2411724. doi: 10.1002/adma.202411724. Epub 2024 Oct 24.
Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast TiCT flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene's hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.
尽管MXene材料越来越受欢迎,但其许多基本性质和应用仍未得到充分探索。在此,首次研究了二维碳化钛MXene的非辐射能量转移特性,并探索了其在单分子生物传感中的应用。DNA折纸定位器用于通过基于甘氨酸-MXene相互作用的特定化学方法固定单个染料,从而能够精确控制其在表面的取向。每个DNA折纸结构在预定高度携带单个染料分子。单分子荧光共聚焦显微镜显示,由旋铸TiCT薄片制成的透明薄膜上的有机发射体(ATTO 542)的能量转移遵循立方距离依赖性,在2.7nm(d)处达到50%的能量转移效率。MXenes被用作短距离光谱纳米尺,用于确定融合在MXene亲水性表面上的染料标记支持脂质双层的z距离。获得了与文献一致的水合层(2.1nm)和脂质双层厚度(4.5nm)值。这些结果突出了碳化钛MXenes作为超薄组装体单分子生物传感的有前途的底物,这是由于其在界面附近的灵敏度,而这一距离范围通常是其他能量转移工具无法达到的。