Suppr超能文献

通过自然交互和大语言模型对人形机器人行为进行增量学习。

Incremental learning of humanoid robot behavior from natural interaction and large language models.

作者信息

Bärmann Leonard, Kartmann Rainer, Peller-Konrad Fabian, Niehues Jan, Waibel Alex, Asfour Tamim

机构信息

Institute for Anthropomatics and Robotics (IAR), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

出版信息

Front Robot AI. 2024 Oct 10;11:1455375. doi: 10.3389/frobt.2024.1455375. eCollection 2024.

Abstract

Natural-language dialog is key for an intuitive human-robot interaction. It can be used not only to express humans' intents but also to communicate instructions for improvement if a robot does not understand a command correctly. It is of great importance to let robots learn from such interaction experiences in an incremental way to allow them to improve their behaviors or avoid mistakes in the future. In this paper, we propose a system to achieve such incremental learning of complex high-level behavior from natural interaction and demonstrate its implementation on a humanoid robot. Our system deploys large language models (LLMs) for high-level orchestration of the robot's behavior based on the idea of enabling the LLM to generate Python statements in an interactive console to invoke both robot perception and action. Human instructions, environment observations, and execution results are fed back to the LLM, thus informing the generation of the next statement. Since an LLM can misunderstand (potentially ambiguous) user instructions, we introduce incremental learning from the interaction, which enables the system to learn from its mistakes. For that purpose, the LLM can call another LLM responsible for code-level improvements in the current interaction based on human feedback. Subsequently, we store the improved interaction in the robot's memory so that it can later be retrieved on semantically similar requests. We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6 and evaluate our methods both quantitatively (in simulation) and qualitatively (in simulation and real-world) by demonstrating generalized incrementally learned knowledge.

摘要

自然语言对话是直观的人机交互的关键。它不仅可以用来表达人类的意图,还可以在机器人没有正确理解命令时传达改进的指令。让机器人以增量方式从这种交互经验中学习,以便它们在未来改进行为或避免错误,这非常重要。在本文中,我们提出了一个系统,以实现从自然交互中对复杂高级行为的这种增量学习,并在人形机器人上展示其实现。我们的系统基于使大语言模型(LLMs)在交互式控制台中生成Python语句以调用机器人感知和动作的想法,部署大语言模型用于机器人行为的高级编排。人类指令、环境观察和执行结果被反馈给大语言模型,从而为下一条语句的生成提供信息。由于大语言模型可能误解(潜在模糊的)用户指令,我们引入了从交互中进行增量学习,这使系统能够从错误中学习。为此,大语言模型可以调用另一个大语言模型,该模型负责根据人类反馈对当前交互进行代码级改进。随后,我们将改进后的交互存储在机器人的内存中,以便以后在语义相似的请求中检索。我们将该系统集成到人形机器人ARMAR-6的机器人认知架构中,并通过展示广义的增量学习知识,在定量(在模拟中)和定性(在模拟和现实世界中)两方面评估我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c4/11499633/73abf534a274/frobt-11-1455375-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验