Suppr超能文献

借助大小数据理解衰老

Making Sense of Aging with Data Big and Small.

作者信息

Dodge Hiroko H, Estrin Deborah

机构信息

Kevreson Professor of Neurology at University of Michigan, and Professor of Neurology at Oregon Health & Science University.

Tishman Professor of Computer Science at Cornell Tech, Cornell University.

出版信息

Bridge (Wash D C). 2019 Spring;49(1):39-46.

Abstract

All people are uniquely endowed at birth by genetic and environmental conditions; by the time they enter their last decades, they have a lifetime of differentiation that determines their state of health and response to new events and conditions. This cumulative differentiation creates substantial intraindividual variability in the rate of aging as well as the extent of resistance and resilience to pathological insults. Therefore, applying normative group data such as group means or median thresholds often fails to accurately identify and predict an individual's clinical state and prognosis. There are two ways to cope with this high intraindividual variability. One is to use "big data," which consists of a large number of subjects to improve the prediction algorithm. Another is to use each subject as their own universe to identify subtle changes or deviations from their premorbid stage. Rich temporal data from a single person-what we call "small data"-can be used for the individual's tailored diagnosis, disease management, and health behavior. Using such data for patient care, self-care, sustained independence, and research involves access to, processing, and interpretive use of an individual's combined data streams over time.

摘要

所有人在出生时都由基因和环境条件赋予了独特的特质;到他们进入人生的最后几十年时,他们已经历了一生的分化过程,这决定了他们的健康状况以及对新事件和新状况的反应。这种累积的分化在衰老速度以及对病理损伤的抵抗力和恢复力方面造成了个体内部的显著差异。因此,应用规范性的群体数据,如群体均值或中位数阈值,往往无法准确识别和预测个体的临床状态及预后。有两种方法可以应对这种高度的个体内部差异。一种是使用“大数据”,它由大量受试者组成,以改进预测算法。另一种是将每个受试者自身视为一个整体,以识别与其病前阶段相比的细微变化或偏差。来自单个人的丰富时间数据——我们称之为“小数据”——可用于个体的个性化诊断、疾病管理和健康行为。将这些数据用于患者护理、自我护理、持续独立生活和研究,涉及对个体随时间变化的综合数据流的获取、处理和解释性使用。

相似文献

8
Dietary glycation compounds - implications for human health.饮食糖化化合物 - 对人类健康的影响。
Crit Rev Toxicol. 2024 Sep;54(8):485-617. doi: 10.1080/10408444.2024.2362985. Epub 2024 Aug 16.
9
Psychological interventions for people with hemophilia.针对血友病患者的心理干预措施。
Cochrane Database Syst Rev. 2020 Mar 18;3(3):CD010215. doi: 10.1002/14651858.CD010215.pub2.

本文引用的文献

3
Digital biomarkers of cognitive function.认知功能的数字生物标志物。
NPJ Digit Med. 2018 Mar 28;1:10. doi: 10.1038/s41746-018-0018-4. eCollection 2018.
10
Predicting mild cognitive impairment from spontaneous spoken utterances.从自发口语中预测轻度认知障碍。
Alzheimers Dement (N Y). 2017 Feb 27;3(2):219-228. doi: 10.1016/j.trci.2017.01.006. eCollection 2017 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验