Suppr超能文献

利用磁共振成像诊断中的K空间:用于K空间全局和图像局部特征的双路径注意力融合

Exploiting K-Space in Magnetic Resonance Imaging Diagnosis: Dual-Path Attention Fusion for K-Space Global and Image Local Features.

作者信息

Bian Congchao, Hu Can, Cao Ning

机构信息

College of Information Science and Engineering, Hohai University, Nanjing 210098, China.

College of Computer Science and Software Engineering, Hohai University, Nanjing 210098, China.

出版信息

Bioengineering (Basel). 2024 Sep 25;11(10):958. doi: 10.3390/bioengineering11100958.

Abstract

Magnetic resonance imaging (MRI) diagnosis, enhanced by deep learning methods, plays a crucial role in medical image processing, facilitating precise clinical diagnosis and optimal treatment planning. Current methodologies predominantly focus on feature extraction from the image domain, which often results in the loss of global features during down-sampling processes. However, the unique global representational capacity of MRI K-space is often overlooked. In this paper, we present a novel MRI K-space-based global feature extraction and dual-path attention fusion network. Our proposed method extracts global features from MRI K-space data and fuses them with local features from the image domain using a dual-path attention mechanism, thereby achieving accurate MRI segmentation for diagnosis. Specifically, our method consists of four main components: an image-domain feature extraction module, a K-space domain feature extraction module, a dual-path attention feature fusion module, and a decoder. We conducted ablation studies and comprehensive comparisons on the Brain Tumor Segmentation (BraTS) MRI dataset to validate the effectiveness of each module. The results demonstrate that our method exhibits superior performance in segmentation diagnostics, outperforming state-of-the-art methods with improvements of up to 63.82% in the HD95 distance evaluation metric. Furthermore, we performed generalization testing and complexity analysis on the Automated Cardiac Diagnosis Challenge (ACDC) MRI cardiac segmentation dataset. The findings indicate robust performance across different datasets, highlighting strong generalizability and favorable algorithmic complexity. Collectively, these results suggest that our proposed method holds significant potential for practical clinical applications.

摘要

通过深度学习方法增强的磁共振成像(MRI)诊断在医学图像处理中起着至关重要的作用,有助于精确的临床诊断和优化治疗方案。当前的方法主要集中在从图像域中提取特征,这在降采样过程中常常导致全局特征的丢失。然而,MRI K空间独特的全局表征能力常常被忽视。在本文中,我们提出了一种基于MRI K空间的新型全局特征提取和双路径注意力融合网络。我们提出的方法从MRI K空间数据中提取全局特征,并使用双路径注意力机制将其与图像域中的局部特征融合,从而实现用于诊断的准确MRI分割。具体而言,我们的方法由四个主要部分组成:图像域特征提取模块、K空间域特征提取模块、双路径注意力特征融合模块和解码器。我们在脑肿瘤分割(BraTS)MRI数据集上进行了消融研究和综合比较,以验证每个模块的有效性。结果表明,我们的方法在分割诊断中表现出卓越的性能,在HD95距离评估指标上比现有最先进的方法有高达63.82%的提升。此外,我们在自动心脏诊断挑战(ACDC)MRI心脏分割数据集上进行了泛化测试和复杂度分析。结果表明,在不同数据集上具有稳健的性能,突出了强大的泛化能力和良好的算法复杂度。总体而言,这些结果表明我们提出的方法在实际临床应用中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfd2/11504126/69485855b7a8/bioengineering-11-00958-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验