Suppr超能文献

一种直接基于磁共振成像K空间数据的新型自动分割方法用于胶质瘤辅助诊断。

A novel automatic segmentation method directly based on magnetic resonance imaging K-space data for auxiliary diagnosis of glioma.

作者信息

Li Yikang, Qi Yulong, Hu Zhanli, Zhang Ke, Jia Sen, Zhang Lei, Xu Wenjing, Shen Shuai, Wáng Yì Xiáng J, Li Zongyang, Liang Dong, Liu Xin, Zheng Hairong, Cheng Guanxun, Zhang Na

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Imperial College London, London, UK.

出版信息

Quant Imaging Med Surg. 2024 Feb 1;14(2):2008-2020. doi: 10.21037/qims-23-946. Epub 2024 Jan 19.

Abstract

BACKGROUND

The use of segmentation architectures in medical imaging, particularly for glioma diagnosis, marks a significant advancement in the field. Traditional methods often rely on post-processed images; however, key details can be lost during the fast Fourier transformation (FFT) process. Given the limitations of these techniques, there is a growing interest in exploring more direct approaches. The adaption of segmentation architectures originally designed for road extraction for medical imaging represents an innovative step in this direction. By employing K-space data as the modal input, this method completely eliminates the information loss inherent in FFT, thereby potentially enhancing the precision and effectiveness of glioma diagnosis.

METHODS

In the study, a novel architecture based on a deep-residual U-net was developed to accomplish the challenging task of automatically segmenting brain tumors from K-space data. Brain tumors from K-space data with different under-sampling rates were also segmented to verify the clinical application of our method.

RESULTS

Compared to the benchmarks set in the 2018 Brain Tumor Segmentation (BraTS) Challenge, our proposed architecture had superior performance, achieving Dice scores of 0.8573, 0.8789, and 0.7765 for the whole tumor (WT), tumor core (TC), and enhanced tumor (ET) regions, respectively. The corresponding Hausdorff distances were 2.5649, 1.6146, and 2.7187 for the WT, TC, and ET regions, respectively. Notably, compared to traditional image-based approaches, the architecture also exhibited an improvement of approximately 10% in segmentation accuracy on the K-space data at different under-sampling rates.

CONCLUSIONS

These results show the superiority of our method compared to previous methods. The direct performance of lesion segmentation based on K-space data eliminates the time-consuming and tedious image reconstruction process, thus enabling the segmentation task to be accomplished more efficiently.

摘要

背景

在医学成像中使用分割架构,尤其是用于胶质瘤诊断,标志着该领域的重大进展。传统方法通常依赖于后处理图像;然而,在快速傅里叶变换(FFT)过程中关键细节可能会丢失。鉴于这些技术的局限性,人们越来越有兴趣探索更直接的方法。将最初为道路提取设计的分割架构应用于医学成像代表了朝这个方向迈出的创新一步。通过将K空间数据用作模态输入,该方法完全消除了FFT中固有的信息丢失,从而有可能提高胶质瘤诊断的精度和有效性。

方法

在该研究中,开发了一种基于深度残差U-net的新型架构,以完成从K空间数据中自动分割脑肿瘤这一具有挑战性的任务。还对具有不同欠采样率K空间数据中的脑肿瘤进行了分割,以验证我们方法的临床应用。

结果

与2018年脑肿瘤分割(BraTS)挑战赛中设定的基准相比,我们提出的架构具有卓越的性能,全肿瘤(WT)、肿瘤核心(TC)和强化肿瘤(ET)区域的Dice分数分别达到0.8573、0.8789和0.7765。WT、TC和ET区域相应的豪斯多夫距离分别为2.5649像素、1.6146像素和2.7187像素。值得注意的是,与传统的基于图像的方法相比,该架构在不同欠采样率的K空间数据上的分割准确率也提高了约10%。

结论

这些结果表明我们的方法优于先前的方法。基于K空间数据的病变分割直接性能消除了耗时且繁琐的图像重建过程,从而能够更高效地完成分割任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16ca/10895104/1af52edbba06/qims-14-02-2008-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验