Suppr超能文献

使用Mask R-CNN的特征金字塔网络变体进行组织病理学图像的细胞核检测与分割

Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN.

作者信息

Ramakrishnan Vignesh, Artinger Annalena, Daza Barragan Laura Alexandra, Daza Jimmy, Winter Lina, Niedermair Tanja, Itzel Timo, Arbelaez Pablo, Teufel Andreas, Cotarelo Cristina L, Brochhausen Christoph

机构信息

Institute of Pathology, University Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.

Central Biobank Regensburg, University and University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.

出版信息

Bioengineering (Basel). 2024 Oct 1;11(10):994. doi: 10.3390/bioengineering11100994.

Abstract

Cell nuclei interpretation is crucial in pathological diagnostics, especially in tumor specimens. A critical step in computational pathology is to detect and analyze individual nuclear properties using segmentation algorithms. Conventionally, a semantic segmentation network is used, where individual nuclear properties are derived after post-processing a segmentation mask. In this study, we focus on showing that an object-detection-based instance segmentation network, the Mask R-CNN, after integrating it with a Feature Pyramidal Network (FPN), gives mature and reliable results for nuclei detection without the need for additional post-processing. The results were analyzed using the Kumar dataset, a public dataset with over 20,000 nuclei annotations from various organs. The dice score of the baseline Mask R-CNN improved from 76% to 83% after integration with an FPN. This was comparable with the 82.6% dice score achieved by modern semantic-segmentation-based networks. Thus, evidence is provided that an end-to-end trainable detection-based instance segmentation algorithm with minimal post-processing steps can reliably be used for the detection and analysis of individual nuclear properties. This represents a relevant task for research and diagnosis in digital pathology, which can improve the automated analysis of histopathological images.

摘要

细胞核解读在病理诊断中至关重要,尤其是在肿瘤标本中。计算病理学中的一个关键步骤是使用分割算法检测和分析单个细胞核的特性。传统上,使用语义分割网络,在对分割掩码进行后处理后得出单个细胞核的特性。在本研究中,我们着重表明,基于目标检测的实例分割网络——掩码区域卷积神经网络(Mask R-CNN),在与特征金字塔网络(FPN)集成后,无需额外的后处理即可为细胞核检测提供成熟且可靠的结果。使用库马尔数据集对结果进行了分析,该公共数据集包含来自各个器官的20000多个细胞核注释。与FPN集成后,基线Mask R-CNN的骰子系数从76%提高到了83%。这与基于现代语义分割的网络所达到的82.6%的骰子系数相当。因此,有证据表明,一种具有最少后处理步骤的端到端可训练的基于检测的实例分割算法能够可靠地用于单个细胞核特性的检测和分析。这代表了数字病理学研究和诊断中的一项相关任务,可改善组织病理学图像的自动化分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a415/11504515/2501a2372c41/bioengineering-11-00994-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验