文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习在数字病理学图像分析中的应用:综述。

Deep learning in digital pathology image analysis: a survey.

机构信息

School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.

Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and State Key Laboratory of Software Development Environment, Beihang University, Beijing, 100191, China.

出版信息

Front Med. 2020 Aug;14(4):470-487. doi: 10.1007/s11684-020-0782-9. Epub 2020 Jul 29.


DOI:10.1007/s11684-020-0782-9
PMID:32728875
Abstract

Deep learning (DL) has achieved state-of-the-art performance in many digital pathology analysis tasks. Traditional methods usually require hand-crafted domain-specific features, and DL methods can learn representations without manually designed features. In terms of feature extraction, DL approaches are less labor intensive compared with conventional machine learning methods. In this paper, we comprehensively summarize recent DL-based image analysis studies in histopathology, including different tasks (e.g., classification, semantic segmentation, detection, and instance segmentation) and various applications (e.g., stain normalization, cell/gland/region structure analysis). DL methods can provide consistent and accurate outcomes. DL is a promising tool to assist pathologists in clinical diagnosis.

摘要

深度学习(DL)在许多数字病理学分析任务中取得了最先进的性能。传统方法通常需要手工制作特定于领域的特征,而 DL 方法可以学习无需人工设计特征的表示。在特征提取方面,与传统的机器学习方法相比,DL 方法的劳动强度更低。在本文中,我们全面总结了组织病理学中基于深度学习的图像分析研究,包括不同的任务(例如分类、语义分割、检测和实例分割)和各种应用(例如染色归一化、细胞/腺体/区域结构分析)。DL 方法可以提供一致和准确的结果。DL 是一种很有前途的工具,可以帮助病理学家进行临床诊断。

相似文献

[1]
Deep learning in digital pathology image analysis: a survey.

Front Med. 2020-8

[2]
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases.

J Pathol Inform. 2016-7-26

[3]
The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

Comput Biol Med. 2021-1

[4]
Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.

BMC Bioinformatics. 2017-5-26

[5]
Deep computational pathology in breast cancer.

Semin Cancer Biol. 2021-7

[6]
Improving generalization capability of deep learning-based nuclei instance segmentation by non-deterministic train time and deterministic test time stain normalization.

Comput Struct Biotechnol J. 2024-1-3

[7]
A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification.

Int J Med Inform. 2018-6-18

[8]
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.

IEEE Access. 2019

[9]
Image analysis and machine learning in digital pathology: Challenges and opportunities.

Med Image Anal. 2016-10

[10]
Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications.

Cancers (Basel). 2022-2-25

引用本文的文献

[1]
A generalizable pathology foundation model using a unified knowledge distillation pretraining framework.

Nat Biomed Eng. 2025-9-2

[2]
Automatic labels are as effective as manual labels in digital pathology images classification with deep learning.

J Pathol Inform. 2025-7-22

[3]
Improved pulmonary embolism detection in CT pulmonary angiogram scans with hybrid vision transformers and deep learning techniques.

Sci Rep. 2025-8-26

[4]
Deep learning model for predicting extraprostatic extension of prostate cancer based on H&E-stained biopsy digital images.

Ann Med. 2025-12

[5]
Diagnostic classification in toxicologic pathology using attention-guided weak supervision and whole slide image features: a pilot study in rat livers.

Sci Rep. 2025-2-4

[6]
Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma.

PLoS One. 2025-1-27

[7]
Out-of-distribution generalization for segmentation of lymph node metastasis in breast cancer.

Sci Rep. 2025-1-7

[8]
Classifying driver mutations of papillary thyroid carcinoma on whole slide image: an automated workflow applying deep convolutional neural network.

Front Endocrinol (Lausanne). 2024

[9]
Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN.

Bioengineering (Basel). 2024-10-1

[10]
Efficient, gigapixel-scale, aberration-free whole slide scanner using angular ptychographic imaging with closed-form solution.

Biomed Opt Express. 2024-9-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索