Suppr超能文献

深度学习用于根尖片多牙特征分割的临床验证

Clinical Validation of Deep Learning for Segmentation of Multiple Dental Features in Periapical Radiographs.

作者信息

Jagtap Rohan, Samata Yalamanchili, Parekh Amisha, Tretto Pedro, Roach Michael D, Sethumanjusha Saranu, Tejaswi Chennupati, Jaju Prashant, Friedel Alan, Briner Garrido Michelle, Feinberg Maxine, Suri Mini

机构信息

Division of Oral & Maxillofacial Radiology, Department of Care Planning & Restorative Sciences, School of Dentistry, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.

Department of Oral Medicine and Radiology, SIBAR Institute of Dental Sciences, Guntur 522509, Andhra Pradesh, India.

出版信息

Bioengineering (Basel). 2024 Oct 5;11(10):1001. doi: 10.3390/bioengineering11101001.

Abstract

Periapical radiographs are routinely used in dental practice for diagnosis and treatment planning purposes. However, they often suffer from artifacts, distortions, and superimpositions, which can lead to potential misinterpretations. Thus, an automated detection system is required to overcome these challenges. Artificial intelligence (AI) has been revolutionizing various fields, including medicine and dentistry, by facilitating the development of intelligent systems that can aid in performing complex tasks such as diagnosis and treatment planning. The purpose of the present study was to verify the diagnostic performance of an AI system for the automatic detection of teeth, caries, implants, restorations, and fixed prosthesis on periapical radiographs. A dataset comprising 1000 periapical radiographs collected from 500 adult patients was analyzed by an AI system and compared with annotations provided by two oral and maxillofacial radiologists. A strong correlation (R > 0.5) was observed between AI perception and observers 1 and 2 in carious teeth (0.7-0.73), implants (0.97-0.98), restored teeth (0.85-0.89), teeth with fixed prosthesis (0.92-0.94), and missing teeth (0.82-0.85). The automatic detection by the AI system was comparable to the oral radiologists and may be useful for automatic identification in periapical radiographs.

摘要

根尖片在牙科实践中常用于诊断和治疗计划制定。然而,它们常常存在伪影、变形和重叠,这可能导致潜在的误诊。因此,需要一个自动检测系统来克服这些挑战。人工智能(AI)通过促进智能系统的开发,正在彻底改变包括医学和牙科在内的各个领域,这些智能系统有助于执行诸如诊断和治疗计划等复杂任务。本研究的目的是验证一个AI系统在根尖片上自动检测牙齿、龋齿、植入物、修复体和固定修复体的诊断性能。一个由从500名成年患者收集的1000张根尖片组成的数据集由一个AI系统进行分析,并与两名口腔颌面放射科医生提供的标注进行比较。在龋齿(0.7 - 0.73)、植入物(0.97 - 0.98)、修复牙(0.85 - 0.89)、有固定修复体的牙齿(0.92 - 0.94)和缺失牙(0.82 - 0.85)方面,观察到AI感知与观察者1和观察者2之间存在强相关性(R > 0.5)。AI系统的自动检测与口腔放射科医生的检测相当,可能有助于根尖片的自动识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4caf/11505595/b48c28acf82c/bioengineering-11-01001-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验