Didouh Hadjer, Khurshid Hifsa, Hadj Meliani Mohammed, Suleiman Rami K, Umoren Saviour A, Bouhaik Izzeddine Sameut
Laboratory of Theoretical Physics and Materials Physics (LPTPM), Department of Process Engineering, Faculty of Technology, Hassiba Benbouali University of Chlef, Hay Salem 02000, Algeria.
Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
Bioengineering (Basel). 2024 Oct 20;11(10):1046. doi: 10.3390/bioengineering11101046.
Microbially influenced corrosion represents a critical challenge to the integrity and durability of carbon steel infrastructure, particularly in environments conducive to biofilm formation by nitrate-reducing bacteria (NRB). This study investigated the impact of NRB biofilms on biocorrosion processes within oil/water recovery operations in Algerian pipelines. A comprehensive suite of experimental and analytical techniques, including microbial analysis, gravimetric methods, and surface characterization, were employed to elucidate the mechanisms of microbially influenced corrosion (MIC). Weight loss measurements revealed that carbon steel samples exposed to injection water exhibited a corrosion rate of 0.0125 mm/year, significantly higher than the 0.0042 mm/year observed in crude oil environments. The microbial analysis demonstrated that injection water harbored an average of (4.4 ± 0.56) × 10 cells/cm for sessile cells and (3.1 ± 0.25) × 10 CFU/mL for planktonic cells, in stark contrast to crude oil, which contained only (2.4 ± 0.34) × 10 cells/cm for sessile cells and (4.5 ± 0.12) × 10 CFU/mL for planktonic cells, thereby highlighting the predominant role of injection water in facilitating biofilm formation. Contact angle measurements of injection water on carbon showed 45° ± 2°, compared to 85° ± 4° for crude oil, suggesting an increased hydrophilicity associated with enhanced biofilm adhesion. Scanning electron microscopy further confirmed the presence of thick biofilm clusters and corrosion pits on carbon steel exposed to injection water, while minimal biofilm and corrosion were observed in the crude oil samples.
微生物影响下的腐蚀对碳钢基础设施的完整性和耐久性构成了严峻挑战,特别是在有利于硝酸盐还原菌(NRB)形成生物膜的环境中。本研究调查了NRB生物膜对阿尔及利亚管道油/水回收作业中生物腐蚀过程的影响。采用了一套综合的实验和分析技术,包括微生物分析、重量法和表面表征,以阐明微生物影响下的腐蚀(MIC)机制。失重测量表明,暴露于注入水的碳钢样品的腐蚀速率为0.0125毫米/年,显著高于在原油环境中观察到的0.0042毫米/年。微生物分析表明,注入水中固着细胞的平均含量为(4.4±0.56)×10个细胞/平方厘米,浮游细胞的平均含量为(3.1±0.25)×10 CFU/毫升,这与原油形成鲜明对比,原油中固着细胞仅为(2.4±0.34)×10个细胞/平方厘米,浮游细胞为(4.5±0.12)×10 CFU/毫升,从而突出了注入水在促进生物膜形成中的主要作用。注入水在碳钢上的接触角测量显示为45°±2°,而原油为85°±4°,这表明与增强的生物膜附着力相关的亲水性增加。扫描电子显微镜进一步证实,暴露于注入水的碳钢上存在厚厚的生物膜簇和腐蚀坑,而在原油样品中观察到的生物膜和腐蚀最少。