Suppr超能文献

探索管道内油/水回收作业中NRB生物膜的粘附与生物腐蚀

Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines.

作者信息

Didouh Hadjer, Khurshid Hifsa, Hadj Meliani Mohammed, Suleiman Rami K, Umoren Saviour A, Bouhaik Izzeddine Sameut

机构信息

Laboratory of Theoretical Physics and Materials Physics (LPTPM), Department of Process Engineering, Faculty of Technology, Hassiba Benbouali University of Chlef, Hay Salem 02000, Algeria.

Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.

出版信息

Bioengineering (Basel). 2024 Oct 20;11(10):1046. doi: 10.3390/bioengineering11101046.

Abstract

Microbially influenced corrosion represents a critical challenge to the integrity and durability of carbon steel infrastructure, particularly in environments conducive to biofilm formation by nitrate-reducing bacteria (NRB). This study investigated the impact of NRB biofilms on biocorrosion processes within oil/water recovery operations in Algerian pipelines. A comprehensive suite of experimental and analytical techniques, including microbial analysis, gravimetric methods, and surface characterization, were employed to elucidate the mechanisms of microbially influenced corrosion (MIC). Weight loss measurements revealed that carbon steel samples exposed to injection water exhibited a corrosion rate of 0.0125 mm/year, significantly higher than the 0.0042 mm/year observed in crude oil environments. The microbial analysis demonstrated that injection water harbored an average of (4.4 ± 0.56) × 10 cells/cm for sessile cells and (3.1 ± 0.25) × 10 CFU/mL for planktonic cells, in stark contrast to crude oil, which contained only (2.4 ± 0.34) × 10 cells/cm for sessile cells and (4.5 ± 0.12) × 10 CFU/mL for planktonic cells, thereby highlighting the predominant role of injection water in facilitating biofilm formation. Contact angle measurements of injection water on carbon showed 45° ± 2°, compared to 85° ± 4° for crude oil, suggesting an increased hydrophilicity associated with enhanced biofilm adhesion. Scanning electron microscopy further confirmed the presence of thick biofilm clusters and corrosion pits on carbon steel exposed to injection water, while minimal biofilm and corrosion were observed in the crude oil samples.

摘要

微生物影响下的腐蚀对碳钢基础设施的完整性和耐久性构成了严峻挑战,特别是在有利于硝酸盐还原菌(NRB)形成生物膜的环境中。本研究调查了NRB生物膜对阿尔及利亚管道油/水回收作业中生物腐蚀过程的影响。采用了一套综合的实验和分析技术,包括微生物分析、重量法和表面表征,以阐明微生物影响下的腐蚀(MIC)机制。失重测量表明,暴露于注入水的碳钢样品的腐蚀速率为0.0125毫米/年,显著高于在原油环境中观察到的0.0042毫米/年。微生物分析表明,注入水中固着细胞的平均含量为(4.4±0.56)×10个细胞/平方厘米,浮游细胞的平均含量为(3.1±0.25)×10 CFU/毫升,这与原油形成鲜明对比,原油中固着细胞仅为(2.4±0.34)×10个细胞/平方厘米,浮游细胞为(4.5±0.12)×10 CFU/毫升,从而突出了注入水在促进生物膜形成中的主要作用。注入水在碳钢上的接触角测量显示为45°±2°,而原油为85°±4°,这表明与增强的生物膜附着力相关的亲水性增加。扫描电子显微镜进一步证实,暴露于注入水的碳钢上存在厚厚的生物膜簇和腐蚀坑,而在原油样品中观察到的生物膜和腐蚀最少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/302a/11505479/8c2538014e95/bioengineering-11-01046-g001.jpg

相似文献

1
Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines.
Bioengineering (Basel). 2024 Oct 20;11(10):1046. doi: 10.3390/bioengineering11101046.
3
Characterization of crude oil degrading bacterial communities and their impact on biofilm formation.
Environ Pollut. 2021 Oct 1;286:117556. doi: 10.1016/j.envpol.2021.117556. Epub 2021 Jun 9.
5
Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment.
Bioprocess Biosyst Eng. 2021 Feb;44(2):355-368. doi: 10.1007/s00449-020-02447-w. Epub 2020 Sep 21.
8
Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase.
Bioelectrochemistry. 2023 Dec;154:108508. doi: 10.1016/j.bioelechem.2023.108508. Epub 2023 Jul 10.

本文引用的文献

2
Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment.
Bioprocess Biosyst Eng. 2021 Feb;44(2):355-368. doi: 10.1007/s00449-020-02447-w. Epub 2020 Sep 21.
3
Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil.
Bioelectrochemistry. 2020 Oct;135:107551. doi: 10.1016/j.bioelechem.2020.107551. Epub 2020 May 13.
4
Colloid chemistry and experimental techniques for understanding fundamental behaviour of produced water in oil and gas production.
Adv Colloid Interface Sci. 2020 Feb;276:102105. doi: 10.1016/j.cis.2020.102105. Epub 2020 Jan 10.
5
Alteration of Methanogenic Archaeon by Ethanol Contribute to the Enhancement of Biogenic Methane Production of Lignite.
Front Microbiol. 2019 Oct 10;10:2323. doi: 10.3389/fmicb.2019.02323. eCollection 2019.
6
Role of thermophilic bacteria ( and ) on crude oil degradation and biocorrosion in oil reservoir environment.
3 Biotech. 2019 Mar;9(3):79. doi: 10.1007/s13205-019-1604-0. Epub 2019 Feb 12.
7
Role of 2-mercaptopyridine on control of microbial influenced corrosion of copper CW024A metal in cooling water system.
Chemosphere. 2019 May;222:611-618. doi: 10.1016/j.chemosphere.2019.01.193. Epub 2019 Feb 1.
8
Multiple Strategies for Light-Harvesting, Photoprotection, and Carbon Flow in High Latitude Microbial Mats.
Front Microbiol. 2018 Dec 4;9:2881. doi: 10.3389/fmicb.2018.02881. eCollection 2018.
9
FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol.
Front Microbiol. 2018 Oct 16;9:2491. doi: 10.3389/fmicb.2018.02491. eCollection 2018.
10
Beyond the tip of the iceberg; a new view of the diversity of sulfite- and sulfate-reducing microorganisms.
ISME J. 2018 Aug;12(8):2096-2099. doi: 10.1038/s41396-018-0155-4. Epub 2018 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验