Suppr超能文献

通过荧光 mRNA 分析可视化巨噬细胞极化。

Visualizing Macrophage Polarization through Fluorescent mRNA Profiling.

机构信息

State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

出版信息

Biosensors (Basel). 2024 Oct 2;14(10):475. doi: 10.3390/bios14100475.

Abstract

Macrophages, known for their phenotypic plasticity, play a critical role in maintaining homeostasis and inflammation-related pathogenesis. Although identifying diverse macrophage phenotypes holds promise for enhancing diagnoses and treatments of diseases mediated by macrophages, existing methodologies for differentiating macrophages often lack precision. They are limited by the cumbersome procedures that require large-scale equipment, such as flow cytometry and transcriptomic analysis. In this context, we have engineered fluorescent polyadenine (polyA)-mediated sticky flares that enable practical visualization of macrophages. This technology facilitates the highly sensitive detection of macrophage phenotypes through the specific recognition of intracellular mRNAs, permitting in situ imaging. Our approach demonstrates the potential for determining macrophage polarization status at the single-cell level within dynamic immune microenvironments, thereby providing crucial diagnostic and prognostic information that could guide the development of tailored treatments for macrophage-related diseases in personalized medicine.

摘要

巨噬细胞以其表型可塑性而闻名,在维持体内平衡和炎症相关发病机制方面发挥着关键作用。尽管鉴定不同的巨噬细胞表型有望提高巨噬细胞介导的疾病的诊断和治疗效果,但现有的巨噬细胞分化方法往往缺乏准确性。它们受到需要大规模设备(如流式细胞术和转录组分析)的繁琐程序的限制。在这种情况下,我们设计了荧光多聚腺嘌呤(polyA)介导的粘性耀斑,可实现巨噬细胞的实际可视化。这项技术通过对细胞内 mRNA 的特异性识别,实现了对巨噬细胞表型的高灵敏度检测,从而可以进行原位成像。我们的方法证明了在动态免疫微环境中以单细胞水平确定巨噬细胞极化状态的潜力,从而提供了关键的诊断和预后信息,这可能为个性化医学中针对巨噬细胞相关疾病的靶向治疗的发展提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f90/11506351/7b720d8dba7e/biosensors-14-00475-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验