Li Chunfang, Yao Yuqi, Jiang Mingyi, Zhang Xinming, Song Linsen, Zhang Yiwen, Zhao Baoyan, Liu Jingru, Yu Zhenglei, Du Xinyang, Ruan Shouxin
School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.
School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China.
Biomimetics (Basel). 2024 Oct 18;9(10):639. doi: 10.3390/biomimetics9100639.
This paper introduces an enhanced Whale Optimization Algorithm, named the Multi-Swarm Improved Spiral Whale Optimization Algorithm (MISWOA), designed to address the shortcomings of the traditional Whale Optimization Algorithm (WOA) in terms of global search capability and convergence velocity. The MISWOA combines an adaptive nonlinear convergence factor with a variable gain compensation mechanism, adaptive weights, and an advanced spiral convergence strategy, resulting in a significant enhancement in the algorithm's global search capability, convergence velocity, and precision. Moreover, MISWOA incorporates a multi-population mechanism, further bolstering the algorithm's efficiency and robustness. Ultimately, an extensive validation of MISWOA through "simulation + experimentation" approaches has been conducted, demonstrating that MISWOA surpasses other algorithms and the Whale Optimization Algorithm (WOA) and its variants in terms of convergence accuracy and algorithmic efficiency. This validates the effectiveness of the improvement method and the exceptional performance of MISWOA, while also highlighting its substantial potential for application in practical engineering scenarios. This study not only presents an improved optimization algorithm but also constructs a systematic framework for analysis and research, offering novel insights for the comprehension and refinement of swarm intelligence algorithms.
本文介绍了一种增强型鲸鱼优化算法,即多群体改进螺旋鲸鱼优化算法(MISWOA),旨在解决传统鲸鱼优化算法(WOA)在全局搜索能力和收敛速度方面的不足。MISWOA将自适应非线性收敛因子与可变增益补偿机制、自适应权重和先进的螺旋收敛策略相结合,从而显著提高了算法的全局搜索能力、收敛速度和精度。此外,MISWOA还融入了多群体机制,进一步提升了算法的效率和鲁棒性。最终,通过“仿真+实验”的方法对MISWOA进行了广泛验证,结果表明,在收敛精度和算法效率方面,MISWOA优于其他算法以及鲸鱼优化算法(WOA)及其变体。这验证了改进方法的有效性以及MISWOA的卓越性能,同时也凸显了其在实际工程场景中的巨大应用潜力。本研究不仅提出了一种改进的优化算法,还构建了一个系统的分析和研究框架,为群体智能算法的理解和优化提供了新的见解。