Suppr超能文献

dsAMP和dsAMPGAN:用于抗菌肽识别与生成的深度学习网络。

dsAMP and dsAMPGAN: Deep Learning Networks for Antimicrobial Peptides Recognition and Generation.

作者信息

Zhao Min, Zhang Yu, Wang Maolin, Ma Luyan Z

机构信息

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Antibiotics (Basel). 2024 Oct 9;13(10):948. doi: 10.3390/antibiotics13100948.

Abstract

Antibiotic resistance is a growing public health challenge. Antimicrobial peptides (AMPs) effectively target microorganisms through non-specific mechanisms, limiting their ability to develop resistance. Therefore, the prediction and design of new AMPs is crucial. Recently, deep learning has spurred interest in computational approaches to peptide drug discovery. This study presents a novel deep learning framework for AMP classification, function prediction, and generation. We developed discoverAMP (dsAMP), a robust AMP predictor using CNN Attention BiLSTM and transfer learning, which outperforms existing classifiers. In addition, dsAMPGAN, a Generative Adversarial Network (GAN)-based model, generates new AMP candidates. Our results demonstrate the superior performance of dsAMP in terms of sensitivity, specificity, Matthew correlation coefficient, accuracy, precision, F1 score, and area under the ROC curve, achieving >95% classification accuracy with transfer learning on a small dataset. Furthermore, dsAMPGAN successfully synthesizes AMPs similar to natural ones, as confirmed by comparisons of physical and chemical properties. This model serves as a reliable tool for the identification of novel AMPs in clinical settings and supports the development of AMPs to effectively combat antibiotic resistance.

摘要

抗生素耐药性是一个日益严峻的公共卫生挑战。抗菌肽(AMPs)通过非特异性机制有效靶向微生物,限制其产生耐药性的能力。因此,新抗菌肽的预测和设计至关重要。近年来,深度学习激发了人们对肽类药物发现计算方法的兴趣。本研究提出了一种用于抗菌肽分类、功能预测和生成的新型深度学习框架。我们开发了discoverAMP(dsAMP),这是一种使用卷积神经网络注意力双向长短期记忆网络(CNN Attention BiLSTM)和迁移学习的强大抗菌肽预测器,其性能优于现有分类器。此外,基于生成对抗网络(GAN)的模型dsAMPGAN生成新的抗菌肽候选物。我们的结果表明,dsAMP在敏感性、特异性、马修相关系数、准确性、精确率、F1分数和受试者工作特征曲线下面积方面表现优异,在小数据集上通过迁移学习实现了>95%的分类准确率。此外,通过物理和化学性质比较证实,dsAMPGAN成功合成了与天然抗菌肽相似的抗菌肽。该模型可作为临床环境中鉴定新型抗菌肽的可靠工具,并支持开发有效对抗抗生素耐药性的抗菌肽。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b648/11504993/2dfe09e265f3/antibiotics-13-00948-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验